MLOMA: Machine Learning, Optimization and Manifolds

21-21 Dec 2023 Clermont-Ferrand (France)

Two "non-standard" methods to analyze 2D/3D shapes

Gérard Subsol

Research-Team ICAR

Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier CNRS / University of Montpellier http://www.lirmm.fr/~subsol/ gerard.subsol@lirmm.fr

2D SHAPE ANALYSIS BASED ON PLANAR MECHANISM DESIGN

Bingjue Li¹, Andrew P. Murray ${ }^{2}$, David H. Myszka², Gérard Subsol ${ }^{3}$
${ }^{1}$ JiangSu Key Lab. For Design and Manufacture of Micro-Nano Biomedical Instruments, School of mechanical Engineering, Southeast University, Nanjing, China
${ }^{2}$ DIMLab, Department of Mechanical and Aerospace Engineering, Univ. of Dayton, USA
${ }^{3}$ Research-Team ICAR, LIRMM, Univ. Montpellier, CNRS, France

Thanks to José Braga (CAGT, Toulouse, France) and Guillaume
Captier (ICAR, LIRMM) for providing data

Outline-based Morphometrics

In general, based on Fourier descriptors:

- Is it well adapted to the shape? 20 harmonics gives $4 \times 20=80$ coefficients to explain the positions of 84 points
- EEF parameters are not directly related to local geometry
- May be sensitive to the definition of the origin point.

Crosses-Observed Data, Open circles - Predicted fit

Fig. 6. Convergence of the EFF fit to the mandible outline.

A New Method

- New method based on mechanical considerations.....
- Shape changing rigid-body mechanisms
- Mechanism: revolute joints (pivot) / prismatic joints (glissière) which parameters are easy to understand.
B. Li, A.P. Murray, D.H. Myszka, G. Subsol. "Synthesizing Planar Rigid-Body Chains for Morphometric Applications". ASME International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Charlotte (U.S.A.), August 2016.

Different profile shapes

The Goal

Find a chain of rigid bodies composed of:

- Constant-curvature segments (slide)
- Mean fixed segments connected by:
- Fused connections
- Revolute joints which fits with all the profiles.

C/R/M/F/C/R/M/R/M

2 C segments $+3 \mathbf{R}$ joints = 5 scalar parameters (angles) only by profile!

General Procedure

Design Profiles

Target Profiles

1. Compute the arc length of each design profile $\quad C_{j}=\sum_{i=1}^{N_{j}-1} c_{j_{i}}$
2. Determine the number of pieces should be in each target profile

$$
m_{j}=\left\lceil\frac{C_{j}}{C_{\text {min }}} m_{d}\right\rceil
$$

3. Desired piece length of target profile

Specify Chain Structure

 End

Initial Segment Matrices (SM)

 End

Generating Segments

Generating Segments

Average radius (reciprocal of curvature)

$$
\bar{r}^{e}=\frac{1}{\sum_{j=1}^{p} m_{j}^{e}-1}\left(\sum_{j=1}^{p}\left(\sum_{i=k_{j}^{e}+1}^{k_{j}^{e+1}-1} r_{j_{i}}\right)\right)
$$

Segment arc length

$$
L_{j}^{e}=m_{j}^{e} \bar{s}^{e}
$$

Average piece length

$$
\bar{s}^{e}=\sum_{j=1}^{p}\left(\frac{1}{m_{j}^{e}}\left(\sum_{i=k_{j}^{e}+1}^{k_{j}^{c+1}-1} s_{j_{i}}\right)\right)
$$

Generate Segments

Fused Connections

Error Evaluation

SM Optimization

SM Optimization

Assembling with Revolute Joints

High-Curvature Regions

Head Circumference

Head Circumference

Fused connection between endpoints $\mathbf{V}=[C M C M C M C M C M C]$ $\mathbf{W}=[F R F R F F R F R F]$ 10 parameters to characterize the shape (4 R joints \& 6 C segments) Max diameter = 877.17, mean matching error $=6.90$ (0.79\% of max diameter)

	C1	C2	C3	C4	C5	C6	R1	R2	R3	R4
Profile1	0.44	0.49	0.38	0.28	0.17	0.46	-0.27	-0.09	-0.08	-0.11
Profile 2	0.96	0.37	0.70	0.16	0.28	0.50	0.21	0.03	-0.05	0.09
Profile 3	0.68	0.73	0.43	0.62	0.46	0.38	0.16	0.26	0.02	0.09

The Cochleae

The Cochleae

$\mathbf{V}=[M M M M C M M C M M M]$ $\mathbf{W}=[R R \ldots R R]$ (10 revolute joints)
12 parameters to characterize shapes (10 R joints + 2 C segments)

Average profile width $=798.68$
Average profile length $=976.40$
Mean matching error $=6.91$

Extension 1 : Growing segment

20 segments $=[\mathrm{M}$ G M M G M M G M M C G M M C G M M G M] and no connection Based on the growth pattern of the mandible
B. Li, S. Zhou, A.P. Murray, G. Subsol. "Shape-changing chains for morphometric analysis of 2D and 3D, open or closed outlines". Scientific Reports (2021 2-year impact factor: 4.380). 11, article number 21479. November 2021.

20 segments $=[\mathrm{M}$ G M M G M M G M M C G M M C G M M G M] and no connection Based on the growth pattern of the mandible
B. Li, S. Zhou, A.P. Murray, G. Subsol. "Shape-changing chains for morphometric analysis of 2D and 3D, open or closed outlines". Scientific Reports (2021 2-year impact factor: 4.380). 11, article number 21479. November 2021.

Extension 1 : Growing segment

20 segments $=[\mathrm{M}$ G M M G M M G M M C G M M C G M M G M] but no connection Based on the growth pattern of the mandible
B. Li, S. Zhou, A.P. Murray, G. Subsol. "Shape-changing chains for morphometric analysis of 2D and 3D, open or closed outlines". Scientific Reports (2021 2-year impact factor: 4.380). 11, article number 21479. November 2021.

Figure 8. Canonical plot of the 94 human mandibles from four groups (H. erectus, H. heidelbergensis, H. neanderthalensis, and H. sapiens) based on the orientation changes between segments (19 variables).

Extension 2: generalization to 3D

Examples: Cochlea in 3D
$\mathrm{T}=[\mathrm{M} \mathrm{M}$ M M H M H M M] and ball joints

A new 3D morphometric method based on a combinatorial encoding of 3D point configurations: application to skull anatomy for clinical research and physical anthropology

Kevin Sol, LIRMM, Montpellier

Emeric Gioan -, AIGCo Research-Team , LIRMM, Montpellier
Gérard Subsol - Research-Team ICAR, LIRMM, Montpellier
Thanks to Yann Heuzé et Joan Richstmeier - PennState Univ., U.S.A.
José Braga et Jacques Treil - CAGT, Toulouse

In landmark-based morphometry, shape differences may be not "metric" but rather algebraic (or topological).

Example: a subset of landmarks moves in front of an other subset (e.g. facial pathology)

Mean
shape
Mean
shape

b

C

Objective

A new 3D morphometric method

In 3D, each set of 4 landmarks A, B, C, D, can be associated with a sign depending on the orientation of the tetrahedron $A B C D$.

For a confiquration composed of $n 3 D$ landmarks, we consider $t=\frac{n!}{(n-4)!\cdot 4!}$ tetrahedra and get a vector of t signs $(+$ or -$)$ that encodes the "shape" of the configuration.

This vector defines a combinatorial mathematical structure called an Oriented Matroid.
[Bjomer, Las Vergnas, Sturmfels, White, Ziegler. 'Oriented Matroids'. Cambridge University Press. 1999]

Data

-3D CT-images of 40 children (0.1 - 19.9 months) with craniosynostosis, i.e. premature fusion of cranial sutures

- visual evaluation and classification into 3 categories by a clinician:
- BCS (bicoronal): fusions of both lateral sutures (15)
- LUCS (left unicoronal): fusion of only left-side suture (8)
- RUCS (right unicoronal): fusion of only right-side suture(17)
- 133 landmarks defined by an expert:

41 anatomical landmarks / 92 curve semilandmarks.

+ 20 Unaffected/Control

	RUCS	BCS	LUCS	Unaffected
RUCS	16.2%	27.6%	34%	25.9%
BCS	27.6%	20.2%	30%	33.4%
LUCS	34%	30%	17.5%	26%
Unaffected	25.9%	33.4%	26%	15.8%

E. Gioan, K. Sol, G. Subsol. "A combinatorial method for 3D landmark-based
morphometry: application to the study of coronal craniosynostosis". 15th International Conference on Medical Image Computing and Computer Assisted Intervention, Nice (France), October 2012, Lecture Notes in Computer Science 7512, p. 533-541, Springer, 2012.
K. Sol. "Une approche combinatoire novatrice fondée sur les matroïdes orientés pour la caractérisation de la morphologie 3D des structures anatomiques". Ph.D. Thesis in Computer Science, University of Montpellier II (France), December 2013.

- Some Characterizations of Classes
(using only the 41 anatomical landmarks)

$>$ RUCS and LUCS are characterized by the sign of only 1 basis.
$>$ The 2 basis b_{1} and b_{2} are symmetric w.r.t. the median sagittal plan.

$$
\begin{gathered}
{\left[\chi\left(b_{3}\right)=-1\right]} \\
\text { and } \\
{\left[\chi\left(b_{4}\right)=-1\right]} \\
\Leftrightarrow \\
\text { BCS }
\end{gathered}
$$

> The signs of 2 bases characterize the category BCS.
Based on the discriminability, we found a subset S of 5 bases and a vector x in $\{-1,1\}^{\boldsymbol{B}}$ such as: \boldsymbol{M} is unaffected if and only if $\boldsymbol{M} \in B(S, x, 2)$ (i.e. the signs of at least 3 of these 5 bases are the same in x and χ_{M}).

