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data with shapes of functions, sequences, and signals
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need for geometric signal processing tools

* Biological data is subtle - large variation in normative population
* Linear Models do not capture the variation in anatomy well

* Importantly Linear Models do not exploit the underlying geometry of the
signals
e “Often, we are interested in comparing the deformations of the objects, rather

than a precise definition of the object itself” }

 Above idea naturally translates to the mathematical modeling of transformation

groups that are non-linear manifolds

TThompson DW (1917) On Growth and Form, Cambridge University Press.



diffusion-weighted imaging
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diffusion-weighted imaging

Fractional anisotropy (FA) diffusion measure — voxelwise analysis

* Measure of anisotropy
e Alterations in white matter fiber axon density, myelination, etc.
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diffusion-weighted imaging (tractometry)

measuring FA along the course of fiber tracts
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main challenges

* Geometry of white matter tracts are highly
heterogeneous

* Direct tract-correspondence across
populations remains challenging

* Preserving geometric information is difficult

* Want to regard streamlines as an entire
collection as opposed to an average:

— however typically this requires pairwise
comparisons of streamlines

— If no pairwise comparisons, forms of
dimension reduction are usually required




related methods: robust efficient linear registration

* Requires Pairwise comparisons of streamlines

3

e Streamlines are represented in |
* Apply affine transformations to register tracts

* Local differences in the bundle may remain unregistered

Garyfallidis et al. Neurolmage (2015)



related methods: currents

* Can characterize the bundle via its response to ‘exciting’ vector fields
* Can represent a tract using a small number of currents (dim-reduction)

* [ends to capture local geometry
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bundle representation

We characterize a set of streamlines as a pair:

An intrinsic shape mean f,

The rest of the fibers are represented by a low-dimensional
tangent vector representation




collection of curves

representation

e Coordinates of a white matter fiber
bundles are represented as a collection
of functions in a Hilbert space:

f — {(f17f27 . -:fN) ‘ fz - Lz([oa 1]7R3)}

f17f27---7f20 l

e Note: One could add additional constraints, such as scaling invariance, rotation
constraints, and translation constraints

e We don’t impose such constraints on the original space of curves



mean fiber

srvf

* For each fiber, we take the
SRVF representation

e SRVF’s form a subset of the
unit Hilbert Sphere

Given:

-

Joshi SH et al. (2007 IEEE CVPR, EMMCVPR), Srivastava et al. (2011 IEEE PAMI)



mean fiber
srvf

* Our representation is invariant under scaling
and translation

* Fisher-Rao distance on the unit Hilbert sphere
s given by:

arg min [|g1 — (g2 0 )/l
vyel

* Traversing a geodesic between two points in
this shape space corresponds to the
registration of curves in the original space

* Pairwise comparisons have a large cost if
implemented among a large population shapes



projections on the tangent space
space of SRVFs

e Subset of a Hilbert Sphere

e Define the Karcher Mean and
project to Tangent Plane

Karcher mean
N

.1 . .
B, = argmin - 3 argminlg — V500,
« NS 0n

where O € SO(3) and 7:[0,1] — [0,1]
is a reparameterization function

we project the {;to the Tangent space centered at
(3,, via exponential maps



distributions of streamlines

low-dimensional representation

e Fourier basis is chosen for Tﬂ(S)
denoted by g,

* The Fourier basis has the advantage
that the coefficient of the tangent
vectors capture shape variability in
the tract

* We take the coefficient matrix as the
representation of the tract, give by

A= (vi,gp),t,k=1,...,N



joint alignment: means + tangent vectors

metric between bundles

DB B) = int V181~ VAR + 47— O,

| |

Compares Means Compares Overall Shape
Obtains registration Obtains registration
of core fiber (means) of the coefficients of shape (bundle)

v [0,1] = [0, 1] O € SO(3)



joint alignment: means + tangent vectors

parallel transport

Andrew Lizarraga

Algorithm 1: Parallel Transport of {v?} for the reconstruction of .42
along a geodesic from 372 to 3} denoted by ¥({v;}, 57; 3})

® g 6 ks W N =

Input: (8,,{vi},i=1,...,N), (85, {vi},i=1,...,N)
Output: Transported tangent vectors {o;},i = 1,...,N)
Compute a tangent vector w such that eXp g2 (w) = B}

Let 1, = /{w, w)
Define a step size k.

for < 2to k—1do
qr :eXpﬁH(%)
Ui =vi — (Vi,qr)qr,t=1,...,N

T — a7, lw ) —
vz—vz”ﬁi”,z—l,...,N

end




bundle optimization problem

subject to subject bundle assignment

e Comparing bundles from one subject to a template subject
requires many distance computations on the low-dimensional
projections

e This reduces to the following alternating optimization problem,
which allows us to find a permutation and rotation assignment
indicating which bundle should be registered from the source
subject to the template subject:

(f“, 75) = ar%rgin (B}L,Al) — I -P. (Bi,fiz)

e Here, I' is an action by rotation,and P is an action by
assighment (permutation)



results: subject to template alignment

®™ Subject ™ Template (Target) Deformations  Deformations
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results: subject to template alignment
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* We compute the bidirectional Hausdorff distance before and after alignment

e Computed for each tract for N = 43 subjects and was shown to be significantly less after
soft alignhment (FDR corrected)

(Except for the CC F Min (p = 0.0748) after correcting for multiple comparisons using FDR)

- The average Hausdorff distance for CC F Min was still lower for the soft alignment method
but did not survive FDR



results: FA alignment (without aligning FA explicitly)

Rigid Alignment (MNI) Soft Alighment
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* After population is aligned to template, FA profiles are resampled

* Profiles appear to be aligning even without explicitly using FA in the
registration process

. Cirni . .
Similar looking tracts appear to carry similar FA values lizarraga ef al. In prep (2024)



results: FA alignment (without aligning FA explicitly)

- Rigid Alignment (MNI) o SoftAlignment
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* After population is aligned to template, FA profiles are resampled

* Profiles appear to be aligning even without explicitly using FA in the
registration process

. Cirni . .
Similar looking tracts appear to carry similar FA values lizarraga ef al. In prep (2024)



results: FA alignment (without aligning FA explicitly)

Rigid Alignment (MNI) o Soft Alignment
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e After population is aligned to template, FA profiles are resampled

* Profiles appear to be aligning even without explicitly using FA in the
registration process

e Similar looking tracts appear to carry similar FA values Lizarraga et al. In prep (2024)



discussion

* A framework for soft registration of white matter fiber tracts using a low-
dimensional representation that encodes shape deformations

* The mechanism of parallel transport and product metric enables an effective
computation of tract differences while simultaneously allowing the alignment of
tracts

* From within-tract fiber-to-mean registration results, we see that the shape
alignment of geometrically similar fibers may enhance the features of diffusion
measures sampled along their lengths even though the measure (FA) was not
explicitly accounted for in the deformation process

* This framework is general and will potentially allow statistical shape analysis of
general collections of streamlines



