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Context: costly shape optimization |

This study is presented with details in [Gaudrie et al., 2020].

Minimize the drag of an airfoil by changing its shape

minf(¢) , S “infinite” dimensional space of shapes
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Context: costly shape optimization |l

Computational practice

design: decide shape parameters x € RY

CAD: translate them into a shape ¢(x) € R?, D > d
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Context: costly shape optimization Il

A straightforward resolution of min,cscrd f(¢(x)) is difficult:
the problem dimension d (10-100) is too large considering the
computing time of f (minutes to hours).

In this work, tackle this problem through,

A) dimension reduction from ¢(x) by eigenshape decomposition

B) metamodeling with Gaussian process (GP) including supervised
dimension reduction (from f),

C) optimization in the reduced-dimension space of A) and B).
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Intrinsic dimension reduction by
eigendecomposition

Creating shapes without evaluating their performance is fast =

calculate a hierarchical basis of eigenvectors in shape space by PCA
(a.k.a. POD)

@ sample CAD parameters x' ~U(S) , i=1,....N , N>d
e calculate the shapes ¢(x') , i=1,..., N and create
® = [p(x?) ... o(x")]
o PCA: (\;, V') (eigenvalues, eigenvectors) of L®® " with
AM>...>2Ap>0

o Keep dimensions (V1,..., V°) where § smallest integer such
PRERY
that S > 0.99

Vi: D x 1 “eigenshape” (but it may not be a feasible shape)
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Airfoils eigenshapes

From a database of possible airfoils [¢(x!), ..., ¢(x39%)],
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extract & = 20 eigenshapes
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Working with the eigencomponents «

Shapes are now described with their eigencomponents «'s:

G+ Vi and o= (p—)TV
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(v, ..., a5) make a specific manifold

Cf. also [Raghavan et al.,, 2013, Li et al., 2018,

Cinquegrana and luliano, 2018]
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0 and the intrinsic dimension

[Gaudrie et al., 2020]: with ¢(x) a vector of discretized contour
points (as opposed to characteristic functions and signed distances),

. : . intrinsic dimension of the
0 = dimension of the & manifold =~
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A) dimension reduction from ¢(x) by eigenshape decomposition

B) metamodeling with Gaussian process including supervised
dimension reduction (from f)

C) optimization in the reduced-dimension space of A) and B)
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GP approximation with dimension reduction |

Approximate f(¢) (the drag) with a GP Y(a) where a = V(¢ — ¢)

2.5

N J/
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GP approximation with dimension reduction ||

@ The GP is mainly controlled through its kernel,
k(ar,a’) = Cov(Y(a), Y (')
Kernels are parameterized by §'s and o2

Anisotropic kernels have 1 6; per dimension
/ 2 5 (ai—af)?
Expl: Kkani(a, ') = 0= exp (— Do 72 )
@ isotropic kernels have 1 6 for all dimensions
Expl: kiso(ct, &) = 0% exp (—L‘iam)

02

Kernel parameters are learned by maximizing the likelihood of
[ . Fl
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GP approximation with dimension reduction Il

o A likelihood that favors sparsity [Yi et al., 2011]:

0* = arg max Log-Likelihood(#; ,F) — A||67 1|
= active and non-active dimensions, «, and as.

a={iell,....0] | O <M>1}
a ={l..,6}\a
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GP approximation with dimension reduction IV

@ GP as the sum of an anisotropic and isotropic GPs
[Allard et al., 2016], accurate on the active dimensions, plain but

sparse otherwise:
k(a7 al) = kani(aa7 ala) + kiso(aéa 01/5)

Expl NACA22 : ;
a;, ={ag,az,a3} , 5, =3, 0 =20
= 20 to 6 kernel parameters

20: 61 to H5—n0, o by likelihood concen-
tration formula.

6: 305's, 1 05, 0;250, O'gni

N
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A) dimension reduction from ¢(x) by eigenshape decomposition

B) metamodeling with Gaussian process including supervised
dimension reduction (from f)

C) optimization in the reduced-dimension space of A) and B)
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Optimizing with GPs

Measure of progress: the improvement,
I(x) = max [0, min(F) — Y(«)]

Optimization scheme : maximize the expectation of the improvement
at each iteration and update the GP

E/ = 0 at data points,
pushes the search away
from them
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Reduced dimension search

Search the full active space and search along a 1D random linear
embedding in the inactive space

|

a® space a® space

oD = arg max E/

[O‘B 761

« coordinate along a random line in non-active space,
0, + 1 dimensions.
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GP update: pre-image problem

To calculate the new objective function, att1* needs to be
transformed into a CADable shape = pre-image problem = projection
of ValttD* 1+ & onto the closest CAD shape

X(t+1) — arg min HVOé(H_l)* + 5 - ¢(X)H2
xeS

and evaluate f(¢(x(t+1))

The next feasible eigencomponents are

a(t+1) — VT(¢(X(t+1)) - 5)
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GP update: replication

Incentive for the optimization to search into the a-manifold: put the
datapoint outside the manifold as E/ will be null there afterwards

Replication

Update the GP with both a(tt1)* and a(tt1);
[ JF]l«— [ ,FlU [aD f(o(xED))] U [alHDx £ (g(x(HHD))]
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Example: NACA 22 airfoil drag minimization

NACA22: Drag in reduced basis NACA22: Drag in CAD space
p NACA22: Best observation

— Eigenshape basis
—— CAD parameters

H

0w o5 0w o

015 0w 005

@ Faster decrease of the objective function in the reduced eigenshape basis (left) compared
with the standard approach (right, CAD parameter space).

@ Smoother airfoils are obtained because a shape basis is considered instead of a
combination of local parameters.
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Summary

@ We have mixed two dimension-reduction techniques: PCA and
subsequent searching into an a-manifold (replication); the
identification of an inactive subspace where sparse learning and
searching is done (additive kernel and linear embedding).

Perspectives

@ Why is the PCA dimension reduction working so well in our
cases of CAD-like shape parameters?

@ The approach is not specific to shapes and would apply any
objective function composed as f($(x))

= try other cases, e.g. functional inputs.

@ Investigate the 2 ideas (PCA ..., inactive space identification
.) separately.
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