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Context: costly shape optimization I

This study is presented with details in [Gaudrie et al., 2020].

Minimize the drag of an airfoil by changing its shape

min
φ∈S

f (φ) , S “infinite” dimensional space of shapes

from https://history.nasa.gov/SP-468/ch5-2.htm
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Context: costly shape optimization II

Computational practice

design: decide shape parameters x ∈ Rd

CAD: translate them into a shape φ(x) ∈ RD , D � d

not costly

simulate: calculate f (φ(x)), e.g., by Navier-Stokes resolution

costly
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Context: costly shape optimization III

A straightforward resolution of minx∈S⊂Rd f (φ(x)) is difficult:
the problem dimension d (10-100) is too large considering the
computing time of f (minutes to hours).

In this work, tackle this problem through,

A) dimension reduction from φ(x) by eigenshape decomposition

B) metamodeling with Gaussian process (GP) including supervised
dimension reduction (from f ),

C) optimization in the reduced-dimension space of A) and B).
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Intrinsic dimension reduction by

eigendecomposition

Creating shapes without evaluating their performance is fast ⇒
calculate a hierarchical basis of eigenvectors in shape space by PCA
(a.k.a. POD)

sample CAD parameters x i ∼ U(S) , i = 1, . . . ,N , N � d

calculate the shapes φ(x i) , i = 1, . . . ,N and create
Φ = [φ(x1) . . . φ(xN)]

PCA: (λi ,V
i) (eigenvalues, eigenvectors) of 1

N
ΦΦ> with

λ1 ≥ . . . ≥ λD ≥ 0

Keep dimensions (V 1, . . . ,V δ) where δ smallest integer such

that
∑δ

i=1 λi∑N
i=1 λi

> 0.99

V i : D × 1 “eigenshape” (but it may not be a feasible shape)
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Airfoils eigenshapes
From a database of possible airfoils [φ(x1), . . . , φ(x5000)],

. . .

extract δ = 20 eigenshapes
{V 1, . . . ,V δ}
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Working with the eigencomponents α

Shapes are now described with their eigencomponents α’s:
φ ≈ φ +

∑δ
i=1 αiV

i and αi = (φ− φ)>V i

(α1, . . . , αδ) make a specific manifold

Cf. also [Raghavan et al., 2013, Li et al., 2018,

Cinquegrana and Iuliano, 2018]
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δ and the intrinsic dimension

[Gaudrie et al., 2020]: with φ(x) a vector of discretized contour
points (as opposed to characteristic functions and signed distances),

δ = dimension of the α manifold ≈
empirical

intrinsic dimension of the
shapes
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A) dimension reduction from φ(x) by eigenshape decomposition

B) metamodeling with Gaussian process including supervised
dimension reduction (from f )

C) optimization in the reduced-dimension space of A) and B)
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GP approximation with dimension reduction I

Approximate f (φ) (the drag) with a GP Y (α) where α = V>(φ− φ)
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Y (α) learns the database
[
αi = V>(φ(x i)− φ) , f (φ(x i))

]︸ ︷︷ ︸
[� , F]

, i = 1,N
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GP approximation with dimension reduction II

The GP is mainly controlled through its kernel,
k(α, α′) = Cov(Y (α),Y (α′))

Kernels are parameterized by θ’s and σ2

Anisotropic kernels have 1 θi per dimension

Expl: kani(α, α
′) = σ2 exp

(
−∑δ

i=1
(αi−α′

i )
2

θi 2

)
isotropic kernels have 1 θ for all dimensions

Expl: kiso(α, α
′) = σ2 exp

(
− (αi−α′

i )
2

θ2

)
Kernel parameters are learned by maximizing the likelihood of
[� , F]
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GP approximation with dimension reduction III

A likelihood that favors sparsity [Yi et al., 2011]:

θ? = arg max
θ

Log-Likelihood(θ; �,F)− λ‖θ−1‖1

⇒ active and non-active dimensions, αa and αā.

a = {i ∈ [1, . . . , δ] | θ?i < M � 1}
ā = {1, . . . , δ} \ a
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GP approximation with dimension reduction IV

GP as the sum of an anisotropic and isotropic GPs
[Allard et al., 2016], accurate on the active dimensions, plain but
sparse otherwise:
k(α, α′) = kani(αa, α

′
a) + kiso(αā, α

′
ā)

Expl NACA22 :
αa = {α1, α2, α3} , δa = 3 , δ = 20
⇒ 20 to 6 kernel parameters

20: θ1 to θδ=20, σ
2 by likelihood concen-

tration formula.

6: 3 θa’s, 1 θa, σ
2
iso, σ

2
ani

Gaudrie, Le Riche, Picheny (CNRS LIMOS) BO in eigenbases 13/22 Dec 2023 13 / 22



A) dimension reduction from φ(x) by eigenshape decomposition

B) metamodeling with Gaussian process including supervised
dimension reduction (from f )

C) optimization in the reduced-dimension space of A) and B)
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Optimizing with GPs

Measure of progress: the improvement,
I (x) = max [0,min(F)− Y (α)]

Optimization scheme : maximize the expectation of the improvement
at each iteration and update the GP
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EI = 0 at data points,
pushes the search away
from them
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Reduced dimension search

Search the full active space and search along a 1D random linear
embedding in the inactive space

α(t+1)∗ = arg max
[αa,α]

EI

α coordinate along a random line in non-active space,
δa + 1 dimensions.
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GP update: pre-image problem

To calculate the new objective function, α(t+1)∗ needs to be
transformed into a CADable shape = pre-image problem = projection
of Vα(t+1)∗ + φ onto the closest CAD shape

x (t+1) = arg min
x∈S

‖Vα(t+1)∗ + φ− φ(x)‖2

and evaluate f (φ(x (t+1)))

The next feasible eigencomponents are

α(t+1) = V>(φ(x (t+1))− φ)
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GP update: replication

Incentive for the optimization to search into the α-manifold: put the
datapoint outside the manifold as EI will be null there afterwards

Replication

Update the GP with both α(t+1)∗ and α(t+1):
[�,F]←− [�,F] ∪

[
α(t+1), f (φ(x (t+1)))

]
∪
[
α(t+1)∗, f (φ(x (t+1)))

]
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Example: NACA 22 airfoil drag minimization
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Faster decrease of the objective function in the reduced eigenshape basis (left) compared
with the standard approach (right, CAD parameter space).

Smoother airfoils are obtained because a shape basis is considered instead of a
combination of local parameters.
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Summary

We have mixed two dimension-reduction techniques: PCA and
subsequent searching into an α-manifold (replication); the
identification of an inactive subspace where sparse learning and
searching is done (additive kernel and linear embedding).

Perspectives

Why is the PCA dimension reduction working so well in our
cases of CAD-like shape parameters?

The approach is not specific to shapes and would apply any
objective function composed as f (φ(x))

⇒ try other cases, e.g. functional inputs.

Investigate the 2 ideas (PCA . . . , inactive space identification
. . . ) separately.
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