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Introduction

Introduction

o Modern machine learning and statistics deal with the problem
of learning from data:

o given a training dataset (y;, x;) i € | where

o xj € R% is the input
o y; € Ris the ,

one seeks a function f : RY — R from a certain function
class F that has good prediction performance on test
data (y¢,xt), t € T, i.e. which has small testing error

S Uye, F(xe)) (1)

teT



Introduction

o For this purpose, we often solve the (possibly penalised)
following problem on the training dataset

> Uy, f(xe)) + pen(f) (2)

i=1

and hope that the estimator f will generalise well on
unobserved data.



Introduction

o This problem is of fundamental significance and finds
applications in numerous scenarios.

o For instance, in image recognition,

o the input x corresponds to the raw image
o the output y is the image category

and the goal is to find a mapping f that can classify new
images with acceptable accuracy.

o Decades of research efforts in statistical machine learning have
been devoted to developing methods to find f efficiently with
provable guarantees.
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o Prominent examples include

o linear classifiers (e.g., linear / logistic regression, linear
discriminant analysis),

o kernel methods (e.g., support vector machines),

o tree-based methods (e.g., decision trees, random forests),

o nonparametric regression (e.g., nearest neighbors, local
kernel smoothing), etc.

o Roughly speaking, each aforementioned method corresponds
to a different function class F from which the final classifier
is chosen.



Introduction

o Deep learning, in its simplest form, consists in looking for
functions of the form

F= {f(x, 0) = Wi(ou(Wys (011 ( --az(vvl(x»)))}.

where o, is a non-linear function which applies componentwise
and W, is an affine operator, I =1,..., L.

o Note that this general architecture does not work without
specific tweaks and tricks

(convolutions, initialisation, dropout, batch
normalisation, layerwise normalisation, etc ... ).



Introduction

o Deep learning is able to approximate complicated nonlinear
maps through composing many simple nonlinear functions.

o The motivation for the multilayer architecture is that there are
different levels of features and the layers might be able to
properly account for these different levels independently.

o Here, we sample and visualize weights from a pre-trained

AlexNet model.
BHS E RS
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o This can be used to generate new images using for instance,
Generative Adversarial Networks or Diffusion models.
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o Evolution of the performances for "old" architectures ...

Model Year # Layers | # Params | Top-5 error
Shallow = 012 - T
AlexMNet 2012 H A1 (L
VGG 2014 19 1440 T.3%

GoogleMet 2014 22 ™ 6.7
ResNet-152 2015 152 G0N 3659




Introduction

o It is widely acknowledged that two indispensable factors
contribute to the success of deep learning, namely

o huge datasets that often contain millions of samples and

o immense computing power resulting from clusters of
graphics processing units (GPUs).

o Admittedly, these resources are only recently available.
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o However, these two alone are not sufficient to explain the
mystery of deep learning:

o Why is over-parametrization not a problem ?
o overparametrisation should lead to overfitting,

W

Overfitting

o BUT ... this is not what we always observe in
practice !
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o and

o nonconvexity does not seem to be a problem: even with
the help of GPUs, training deep learning models is still
NP-hard in the worst case due to the highly nonconvex
loss function to minimize.

o Nevertheless, standard incremental algorithms
(Stochastic Gradient Descent, etc) often reach good
minimisers of the Empirical Risk
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Why overparametrise, to begin with ?
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Why overparametrise, to begin with 7

o It is often observed that depth helps efficiently extract
features at different scales from the inputs,

o recent studies found that increasing both depth and width in
a shallow model leads to very nice continuous limits, where
PDE tools can be put to work...

o Networks with wide layers (larger than sample size) enjoy
connectivity of the minimisers (Nguyen 2019)

See Figure 1 below from Garipov et al. 2018 for an illustration. Solutions A and B have low cost

but the line connecting them goes through solutions with high cost. But we can find C of low
cost such that paths AC and CB only pass through low-cost region.

Vel
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Why overparametrise, to begin with 7

o Recent interesting work by Bubeck and Sellke states that
overparametrisation is key to robustness

A Universal Law of Robustness via Isoperimetry

Sébastien Bubeck Mark Sellke
Microsoft Research Stanford University
sebubeck@microsoft.com msellke@stanford.edu
Abstract

Classically, data interpolation with a parametrized model class is possible as long
as the number of parameters is larger than the number of equations to be satis-
fied. A puzzling phenomenon in deep learning is that models are trained with
many more parameters than what this classical theory would suggest. We propose
a theoretical explanation for this phenomenon. We prove that for a broad class
of data distributions and model classes, overparametrization is necessary if one
wants to interpolate the data smoothly. Namely we show that smooth interpolation
requires d times more parameters than mere interpolation, where d is the ambi-
ent data dimension. We prove this universal law of robustness for any smoothly
parametrized function class with polvnomial size weiehts. and anv covariate dis-
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Potentially bad consequences of overparametrisation 7
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What are the bad consequences of overparametrisation 7

o When some of the layers are not wide, over-parametrization
usually entails existence of many local minimisers with

o Common practice advises to runs stochastic gradient
descent with random initialization and converges to
parameters with very good practical prediction accuracy.

o Why is this simple approach actually often working ?
o Overfitting should take place in full generality

o Does the optimisation algorithm help find better
networks 7

The goal of current research is to resolve these paradoxes !
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Generalisation bounds
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o "0OId" but we interesting work by Bartlett, Barron and others

Theorem (B., Foster, Telgarsky, 2017)

With high probability over n training examples
(X1, 11),..., (Xn. Ya) € X x {£1}, every fiy with Ry < r has

Pr(sign(f(X)) # Y) = - \__, L[Yif (X |+0 { . '\L” \)'

#

Here, fiy is computed in a network with L layers and parameters
Wl ..... Wf_:

fw(x) := or(Wior (W1 - - o (Wix) --- ).

where the o; are 1-Lipschitz, and we measure the scale of fiy using a
product of norms of the matrices W/,
33y 52

for example, r —]_[ _q Wil (_.. .Tﬂz)




o New trends involve PAC-Bayes bounds and compression

Computing Nonvacuous Generalization Bounds for Deep (Stochastic) Neural
Networks with Many More Parameters than Training Data

Gintare Karolina Dziugaite Daniel M. Roy
Department of Engineering Department of Statistical Sciences
University of Cambridge University of Toronto
Abstract for trained neural networks in the modern deep learning
regime where the number of network parameters eclipses
One of the defining properties of deep learn- the number of training examples.

ing is that models are chosen to have many
more parameters than available training data.
In light of this capacity for overfitting, it is
remarkable that simple algorithms like SGD re-
liably return solutions with low test error. One
roadblock to explaining these phenomena in

The bounds we compute are data dependent, incorporating
millions of components optimized numerically to identify
a large region in weight space with low average empirical
error around the solution obtained by stochastic gradient
descent (SGD). The data dependence is essential: indeed,
the 157" "mension of neural networks is typically bounded
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o New trends involve PAC-Bayes bounds and compression

Stronger generalization bounds for deep nets via a compression

approach
Sanjeev Arora® Rong Ge' Behnam Neyshabur? Yi Zhang!
Abstract

Deep nets generalize well despite having more parameters than the number of training sam-
ples. Recent works try to give an explanation using PAC-Bayes and Margin-based analyses, but
do not as yet result in sample complexity bounds better than naive parameter counting. The
current paper shows generalization bounds that’re orders of magnitude better in practice. These
rely upon new succinct reparametrizations of the trained net a compression that is explicit
and efficient. These yield generalization bounds via a simple compression-based framework in-
troduced here. Cur results also provide some theoretical justification for widespread empirical
suceess in compressing deep nets.

Analysis of correctness of our compression relies upon some newly identified “noise stabil-
ity” properties of trained deep nets, which are also experimentally verified. The study of these
properties and resulting genera s0 extended to convolutional nets, which
had eluded earlier attempts on proving generalization.

zation bounds are
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o New trends involve PAC-Bayes bounds and compression

Generalization Bounds:
Perspectives from Information
Theory and PAC-Bayes

Fredrik Hellstrom
University College London
f.hellstrom@ucl.ac.uk

Giuseppe Durisi
Chalmers University of Technology
durisi@chalmers.se

Benjamin Guedj
Inria and University College London
benjamin.guedj®@inria.fr

Maxim Raginsky
University of lllinois

tX1v:2309.04381v1 [cs.LG] 8 Sep 2023
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Double Descent and Benign overfitting
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o Overparametrisation might work although it contradicts the
intuition that "overfitting hurst generalisation”

o Now, one often speaks of "interpolation” and one hopes that
it does not hurt generalisation;

o When this holds, one speaks of Benign Overfitting.

undar-fitting . over-fitting
'

» Test risk
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Test risk
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o Montanari et al. resolved this paradox ...
(Uses a lot of random matrix theory in the asymptotic regime)

Surprises in High-Dimensional Ridgeless Least Squares
Interpolation

Trevor Hastie Andrea Montanari Saharon Rosset Ryan J. Tibshirani

Abstract

Interpolators—estimators that achieve 7ero training error—have attracted growing attention in machine leamning.
mainly because state-of-the art neural networks appear to be models of thi e study minimum {2
norm (“ridge ") interpolation in high-dimensional least squares reg o different models for
the feature distribution: a linear 'nu&l whem the feature vectors z; € are obtained by applying a linear transform
7); and a nonlinear model, where the feature vectors an obtained
i a mairix
quantitative
s, including the

wa —~c\rcrul p'\':nu'mnaual have hccr c\bwwcd in large-: utal.c ncl.ral networks
“double descent” behavior of the prediction risk, and the potential benefits of overparametrization.

1 Introduction

Modem deep learning models involve a huge number of parameters. In nearly all applications of these models, current
practice suggests that we should design the network to be sufficiently complex so that the model (as trained. ty pically.
by gradient descent) interpolates the data, ie.. achieves zero training error. Indeed, in a thought-provoking experiment,
Zhang et al. (2016) showed that state-of-the-art deep neural network architectures can be trained to interpolate the data
even when the actual labels are replaced by entirely random ones.

Despite their enormous complexity, deep neural networks are frequently seen to generalize well, in meaningful
practical problems. At first sight. this seems to defy conventional statistical wisdom: interpolation (vanishing training

for the linear model !
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o Benign overfitting already occurs in traditional statistics

Does data interpolation contradict statistical optimality’

Mikhail Belkin Alexander Rakhlin Alexandre B, Tsybakov
The Ohio State University MIT CREST, ENSAE
Abstract

We show that learning methods interpolating the training data can achieve optimal rates for

the problems of nonparametric regression and prediction with square loss.

1 Introduction

In this paper, we exhibit estimators that interpolate the dat
genee for the problems of nonparametric regr
observation goes against the usual (or, folklore?

:t achieve optimal rates of conver-
ion and prediction with square loss. This curions

) intuition that a good statistical procedure should

stin

itors

xact fit to data in favor of a more smooth representation. The family of

we consider do exhibit a bias-variance trade-off with a tuning parameter, yet this “regularization’
co-exists in harmony with data interpolation.

Motivation for this work is the recent focus within the machine les community on the

out-of

anple performance of neural networks. These flexible models are typically trained to fit

the data exactly (either in their sign or in the actual value). yet they predict well on unseen data.
The conundrum has served both as a souree of excitement about the “magical” properties of neural
networks, as well as a call for the development of novel statistical techniques to resolve it.

The aim of this short note is to show that not only can interpolation be a good statistical
procedure, but it can even be optimal in a minimax sense. To the best of our knowledge, such
optimality has not been exhibited before.

Let (X,Y) be a random pair on B x R with distribution Pyy, and let f(z) = E[Y|X = x|
be the regression function. A goal of nonparametric estimation is to construct an estimate f, of
f. given a sample (X1.Y7). ..., (X, Y,) drawn independently from Pyy. A classical approach to
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o Benign overfitting already occurs in traditional statistics

The Nadaraya-Watson estimator for a singular kernel K is defined as

if = X, for some i =1,....n
£y 1\'(“‘ ) =0,

fulz) = 2ii=1 T
otherwise.
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Tnterpolation with K (1) = [[u]| = T{|ju]| < 1}. a = 0.49, and various values of A

Figure: Singular Kernel estimators that interpolate !
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Interpolation and statistics

The Nadaraya-Watson estimator for a singular kernel K is defined as

Y if x = X; for some i =1, n

B n =1
fm=d O it T K (2) =0,

otherwise

Theorem (Belkin, Rahklin and Tsybakov (2019))

The Nadaraya Watson estimator achieves the minimax pointwise
risk over certain Holder classes. (And thus, you cannot do
essentially better !)
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What do we know about the bassin of attraction of deep learning
minimisers ?
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o Flat minimisers (borrowed from T. Goldstein)

Understanding Generalization through Visualizations

W. Ronny Huang Zeyad Emam
University of Maryland University of Maryland
wrhuang@umd . edu zeyademath.und. edu

h Goldblum am Fowl Justin K. Terry

University of Maryland University of Maryland University of Maryland
goldblumemath.und.edu  1fowlOmath.und.edu  justinkterryegmail.com

Furong Huang Tom Goldst
University of Maryland University of Maryland
furonghes .und. edu tomgecs. und. edu

Abstract

‘The power of neural networks lies in their ability to generalize to unseen data, yet
the underlying reasons for this phenomenon remain elusive. Numerous rigorous
atiempts have been made o explain generalization, but available bounds are still
quite loose, and analysis does not always lead to true understanding. The goal of
this wark is to make generalization more intuitive. Using visualization methods,
we discuss the mystery of generalization, the geometry of loss landscapes. and how
the curse (or, rather, the blessing) of dimensionality causes optimizers to settle into
‘minima that generalize well

Introduction

Neural networks are a pawerful tool for solving elassification problems. The power of these models
is due in part to their expressiveness: they have many parameters that can be efficiently optimized
to fit nearly any finite training set. However, the real power of neural network models comes fmm
their ability to generalize; they often make accurate predictions on test data that were not seen duri
training, provided the test data is sampled from the same distribution as the training data.

The generalization ability of neural networks is seemingly at odds with their expressiveness. Neural
network training algorithms work by minimizing a loss function that measures model performance
using only training data. Because of their flexibility, it is possible to find parameter configurations

g 3 wa® Start(nitaizaton)
Herate positin

o 1. 2
Thousands of epochs
Nearby minima, .




Introduction

o Flat minimisers (borrowed from T. Goldstein)

(1) 100% train, 100% test (b) 100% train, 7% test

(c) Minimizer of network in (a) above (d) Minimizer of network in (b) above

Figure: Flat minimiser (left) and steep minimiser (right)
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Flat minimisers (borrowed from T. Goldstein)

Figure: Flat minimiser (left) and steep minimiser (right)

Empirical discovery

On a set of experimental problems Tom Goldstein and
collaborators have empirically discovered that the basins
surrounding good minima have a volume at least 10,000 orders of
magnitude larger than that of bad minima (!!), rendering it
impossible to stumble upon bad minima in practice..
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Do local optimisers communicate with each other ?



Home - SIAM Journal on Mathematics of Data Science > Vol. 3, Iss. 2 (2021) > 10.1137/19M1308943

< Previous Article

Global Minima of Overparameterized Neural Networks

Author: Yaim Cooper ~ AUTHORS INFO & AFFILIATIONS

https://doi.org/10.1137/19M1308943

Abstract

.— Ve explore some mathematical features of the loss landscape of overparameterized neural networks. A
- priori, one might imagine that the loss function looks like a typical function from R?to R, in particular,
that it has discrete global minima. In this paper, we prove that in at least one important way, the loss
function of an overparameterized neural network does not look like a typical function. If a neural net

has d parameters and is trained on n data points (z;,%;) € R® x R", with d > rn, we show that the locus
1ttps://epubs.siam.org/toc/simdag/current jally not discrete but rather an (d — rn)-dimensional submanifolml‘{

Figure: A neat result by Cooper in SIAM Journal Data Science
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Landscape connectivity (borrowed from blog post by R.

Ge)

o A big mystery about deep learning is how, in a highly
nonconvex loss landscape, gradient descent often finds
near-optimal solutions those with training cost almost
zero-even starting from a random initialization.

o This can be explained by this very counterintuitive
phenomenon:

Empirical discovery

(Freeman and Bruna, 2016, Garipov et al. 2018, Draxler et al.
2018) All pairs of low-cost solutions found via gradient descent can
actually be connected by simple paths in the parameter space, such
that every point on the path is another solution of almost the same
cost. In fact the low-cost path connecting two near-optima can be
piecewise linear with two line-segments, or a Bezier curve.
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Landscape connectivity (borrowed from blog post by R.

Ge)

Explaining Landscape Connectivity of Low-cost Solutions for
Multilayer Nets

Rohith Kuditipudi Xiang Wang Holden Lee
Duke University Duke University Princeton University
rohith.kuditipudi@duke.edu xwanglcs. duke. edu holdenl@princeton. edu
Yi Zhang Zhiyunan Li
Princeton University Princeton University
y.zhanglcs. princeton. edu zhiyuanlifics.princeton.edu
Wei Hu Sanjeev Arora
Princeton University Princeton University and Institute for Advanced Study
huweifics. princeton. edu arorafics. princeton. edu

Rong Ge
Duke University
rongge@cs. duke. edu

Abstract

Mode connectivity (Garipov et al 2018) is & surprising phenomenon in the loss
landscape of deep nets. Optima—at leas se discovered by gradient-based optimization—turn out to
be connected by simple paths on which the loss function is almost constant. Often, these paths can be
chasen to be e-wise linear, with as few as two segments.

We give mathematical explanations for this phenomenon, assuming generic properties (such as dropout
stability and noise stability) of well-trained deep nets, which have previously been identified as part of
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Landscape connectivity (borrowed from blog post by R.

Ge)

23

0.54
0.28

017

IUH
0.065

Figure: Landscape connectivity !
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Landscape connectivity

If two trained multilayer ReLU nets with the same architecture are
e-dropout stable, then they can be connected in the loss landscape
via a piece-wise linear path in which the number of linear segments
is linear in the number of layers, and the loss of every point on the
path is at most € higher than the loss of the two end points.

Figure: Connectivity via dropout-stability !
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Landscape connectivity (borrowed from R. Ge's blog post)

If two trained multilayer ReLU nets with the same architecture are
e-noise stable, then they can be connected in the loss landscape via
a piece-wise linear path with at most 10 segments, and the loss of
every point on the path is at most € higher than the loss of the two
end points.




Gradient descent

Striking properties of stochastic gradient descent



Gradient descent

o For some time, width was thought to only help simplify the
analysis because minimizers are connected
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For some time, width was thought to help simplify the
analysis because minimizers are connected

... but more is actually happening ! An asymptitical
phenomenon shows that :

Wide Neural Networks of Any Depth
Evolve as Linear Models Under Gradient Descent

Lechao Xiao“'2 Samuel S. Schoenholz' Yasaman Bahri'
Jascha Sohl-Dickstein' Jeffrey Pennington '

Jachoon Lee

Abstract systems can often shed light on these hard problems. For
neural networks, one such limit is that of infinite width,
which refers either to the number of hidden units in a fully-
connected layer or to the number of channels in a convo-
lutional layer. Under this limit, the output of the network
at initialization is a draw from a Gaussian process (GP):
moreover, the network output remains governed by a GP
after exact Bayesian training using squared loss (Neal, 1994:
B A . S Lee et al., 2018; Matthews et al., 2018 Novak et al., 2019:
infinite width limit, they are governed by a linear ) ) N

) e Garriga-Alonso et al., 2018). Aside from its theoretical

model obtained from the first-order Taylor expan- I L . P .
. . - ) e simolicitv. the infinite-width limit is also of practical inter-

A longstanding goal in deep learning research
has been to precisely characterize training and
generalization. How r. the often complex loss
landscapes of neural networks have made a theory
of learning dynamics elusive. In this work, we
show that for wide neural networks the learning
dynamics simplify considerably and that, in the




Gradient descen

o ...but more is actually happening ! An asymptotical
phenomenon shows that :

de Neural Networks of Any Depth
Evolve as Linear Models Under Gradient Descent

"12 Lechao Xiao"'? Samuel S. Schoenholz' Yasaman Bahri'
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N Abstract systems can often shed light on these hard problems. For
— . . neural networks, one such limit is that of infinite width,
— A longstanding goal in deep learning research N . N P
) H . which refers either to the number of hidden units in a fully-
o~ has been to precisely characterize training and
o ) connected layer or to the number of channels in a convo-
— generalization. However, the often complex loss . P
) lutional layer. Under this limit, the output of the network
e landscapes of neural networks have made a theory P .
< ” ; ] ; at initialization is a draw from a Gaussian process (GP);
- of learning dynamics elusive. In this work, we :
2, Co y . moreover, the network output remains governed by a GP
show that for wide neural networks the learning - N
after exact Bayesian training using squared loss (Neal, 1994;

dynamics simplify considerably and that, in the
infinite width limil, they are governed by a linear
model obtained from the first-order Taylor expan-

Lee et al., 2018; Matthews et al., 2018; Novak et al,, 2019;
Garriga-Alonso et al., 2018). Aside from its theoretical
simolicitv. the infinite-width limit is also of practical inter-

o Gradient descent is then shown to converge exponentially
quickly to a closeby interpolator.



Gradient descent

o Width helps simplify the analysis
o Recent works of Jaquot et al. says it then reduces reduces
Deep Neural Networks to a tangent kernel method whose

feature map corresponds to the gradient of the network at a
random initialisation . ..

Neural Tangent Kernel:
Convergence and Generalization in Neural Networks

Arthur Jacol
Ecole Polytechnique Fédérale de Lansanne
arthur. jacot@netopera.net

Franck Gabriel
Tmperial College London and Eeole Polytechnique Fédérale de Lausanne
franckrgabriel@gmail . com

Clément Hongler
Ecole Polytechnique Fédérale de Lausanne
clement honglerf@gmail . com
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o Width helps simplify the analysis

o Recent works of Jaquot et al. Chizat, Oyallon and Bach says
that this phenomenon of exponential speed is a phenomenon
that takes place in a much larger setting

On Lazy Training in Differentiable Programming

Lénaic Chizat Edouard Oyallon
CNRS. Université Paris-Sud CentraleSupelec, INRIA
Orsay, France Gif-sur-Yvette. France

lenaic.chizat@u-psud.fr edouard.oyallon@centralesupelec.fr

Francis Bach
INRIA, ENS. PSL Research Uni
Paris, France
francis.bach@inria.fr

Abstract

In a series of recent theoretical works, it was shown that strongly over-
parameterized neural networks trained with gradient-based methods could converge
exponentially fast to zero training loss, with their parameters hardly varying. In
this work, we show that this y training” phenomenon is not specific to over.
parameterized neural networl nd is duL to a choice of scaling, often implicit,




Gradient descent

Other interesting property of gradient descent : implicit bias



Gradient descent

o Implicit biais of gradient descent

o For minimising a function F(¢), one can use the gradient
method :

o0+ = o) —p, vF (M) (3)




Gradient descent

o if there is a unique global minimizer 6., then the goal of
optimization algorithms is to find this minimizer,

o when there are multiple minimizers (thus for a function which
cannot be strongly convex ), one can easily show that

is converging to zero.



Gradient descent

Implicit biais of gradient descent

o With some extra assumptions, we can show that the algorithm
is converging to one of the multiple minimizers of F

o note that when F is convex, this set is also convex.

o But ...which one ?



Gradient descent

Implicit biais of gradient descent

o This is what is referred to as the implicit regularization
property of certain optimization algorithms, and in particular,
gradient descent and its variants.

o This is interesting in overparametrised machine learning
because there usually are many minimizers

o In a nutshell,

o This shows that the chosen empirical risk minimizer is
not arbitrary !



New analysis via Neuberger's theorem

A slightly more general nonlinear regression setup: ridge functions
(work with Emmanuel Caron, Univ. Avignon, France)



New analysis via Neuberger's theorem

Mathematical Model

Let Z; = (X;, Y;) in R¥TL x R, i = 1,..., n be observations drawn
from the following model

Y = (X)) +¢e; (5)

i=1,...,n, where we assume that

o the vectors X;, i =1,...,n are random and i.i.d., taking
values in RY
o the values ¢;, i = 1,..., n are the random observation errors.
The goal is to estimate f* based on the observation 73, ..., Z,.

The estimation of f* will be based on restricting the search to a
subset F of functions of a Banach space B.



New analysis via Neuberger's theorem

In order to generalise, the estimator should be chosen in the set of
stationary points of the empirical version of the risk R : F — R

defined by
R(f) =E[((Y, £(X))],
where £ : R x R — R satisfies
o l(y,y)=0forall y e R and

o l(y,-): R+ R is a strictly convex twice continuously
differentiable nonnegative function



New analysis via Neuberger's theorem

Let R,(f) denote the empirical risk defined by

Rul) = 5 S UV F(X0), (©
i=1

fERM

Then, the Empirical Risk Minimizer will be a solution to

FERM ¢ argmins.» Ro(f). (7)



New analysis via Neuberger's theorem

Let us start with ridge type functions



New analysis via Neuberger's theorem

Ridge type functions

We consider a statistical model of the form
E[Y: | Xi] = f(X,-tG*), i=1,...,n, (8)
where

o 0* € RP

o the function f: R — R is assumed increasing



New analysis via Neuberger's theorem

Ridge type functions

o the data Xi, ..., X, will be assumed isotropic and subGaussian

o the matrix
X" =[X1,..., X (9)

is full rank with probability one.
o forall i=1,...,n, the random vectors X; are assumed
o to have a second moment matrix E[X;X[] = I,
o to have f»-norm equal® to VP-

o the errors ¢; = Y; — E[Y;] are independent subGaussian
centered random variables with >-norm upper bounded by
K..

Inotice that this is different from the usual regression model, where the
columns are assumed to be normalised



New analysis via Neuberger's theorem
Ridge type functions

In order to estimate 6%, the Empirical Risk Minimizer 8 is defined
as a solution to the following optimisation problem

0 € argmingcg Rn(6) (10)
with

1 n
Rn(0) = argmingeq — DY - £(X1)). (11)
i=1

Moreover, we assume that ¢/(0) = 0 and ¢” is upper bounded by a
constant Cpr > 0.



New analysis via Neuberger's theorem

o Let us concentrate on Ridge type functions

Theorem

Assume that @ is near interpolating, i.e. |Y; — f(X."9)| <e. Let 6°
denote the minimum norm near interpolating solution to the ERM
problem, i.e.

argming ||0]la  subject to emin < |Yi — £(X;"0)| < emax, (12)

i=1,...,n, for some emin, Emax = 0.
Assume that f~1 is Cs—1-Lipschitz on the set

{z]emin <|Yi—f(2)] < €max,i =1,...,n}.




New analysis via Neuberger's theorem
Theorem

Then, under technical assumptions, for any constant v > 0, we
have

2n Cfo—l
C KxK-(v/n+1)
(1 +a)y/p — Cre/n)
6v/CCo Cr Ko/
(N1 = a)yp— Cry’

|F(Xa420°) = (X167 < Emax + tKx|07]|2

+t

tK. + t
+ K+t

with probability at least

1 — 2exp (—ck,@®p) — exp (—n/2)— exp(—ck, p) — 3exp(—t2/2),
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where r is a solution of

. Cur pre)V/n
3(r) (1= a)y/p = Cixv/n)




New analysis via Neuberger's theorem

A handy result from Neuberger about the distance of the solution
of a zero finding problem, i.e. consisting in solving

F(f) =0,

to the initial guess f*.

The Continuous Newton’s Method,
Inverse Functions, and Nash-Moser

J. W. Neuberger

1. INTRODUCTION. The conventional Newton’s method for finding a zero of a
function F : R" — R", assuming that (F'(y))~! exists for at least some y in R”, is the
familiar iteration: pick zo in R” and define

n=u—F@) 'Flz) (k=01,2,...),

hoping that z;, Z,. ... converges to a zero of F'. What can stop this process from find-

ing a zero of F? For one thing, there might not be a zero of F. For another, the process

might terminate for some integer k in the event that F’(z;) does not have an inverse.
A lelldl[l of attraction u)u‘espomhr1<T to a given root of F consists of the set of dl]

N e ERERl T NS S SN




New analysis via Neuberger's theorem

Theorem (Neuberger's theorem)

Suppose that r > 0, that 6" € RP and that the map F is
continuous on B,(0*), with the property that for each 0 in B,(6")
there exists a vector d in B,(0) such that,

i FO+td)—FO)
tl0 t

(7). (14)

Then there exists u in B,(0*) such that F(u) = 0.




New analysis via Neuberger's theorem

Since the loss is twice differentiable, the empirical risk li’,, is itself
twice differentiable. The Gradient of the empirical risk is given by

== Z (Y — F(X0)) F'(XE0)X;

= —;XtD(V) I'(€)

where ¢'(¢€) is to be understood componentwise, and

and the Hessian is given by

VRRL(8) = 137 (¢ - F(xi0) 0P
i=1

— (Y — F(XER)) f”(x,.fa))x,-x,f. (16)



The DNN case

The Deep Neural Network case



Assumption

The sample satisties the following separation
¢ 1
min [|X; — Xy||> > en” v (17)
ii'=

with probability larger than or equal to 1 — 9, for some positive
constants ¢, v and for 6 € (0,1).

The Holder exponent v is usually interpreted as a surrogate for the
intrinsic dimension of the data manifold. E.g.,

Intrinsic Dimensionality Estimation of Submanifolds in B?

Matthias Hein MHUTUEBINGEN.MPG.DE

Max Planck Institute for Biological Cybernetics, Tiibingen, Germany

Jean-Yves Audibert AUDIBERTCERTIS.ENPC.FR

CERTIS, ENPC, Paris, France



The DNN case

Here is a Banach space version of the Neuberger theorem.

Theorem (Neuberger's theorem)

Suppose that B, J, and KC are three Banach spaces and that B is
compactly embedded in J .

Suppose that F : B — IC is continuous with respect to the
topologies of J and K.

Suppose that f € B, that r > 0, and that for each g in B,(f),
there is an h in B,(0) such that

im ~(F(g + th) — F(g)) = ~F ().

t—0t

Then there is f in B,(f) such that F(f) = 0.

For r >0 and u in B, B,(u) and B,(u) will denote the open and
closed balls in B, respectively, with center u and radius r.



The DNN case

Theorem (Neuberger's theorem for ERM)

Suppose that r > 0, that * € RP and that the Jacobian DR,(-) is
a continuous map on B(6*, r) with the property that for each 6 in
B(6*, r) there exists a vector d in B(0, r) such that,

D An - An A
im Rn(6 + tdt) DR() _ _pg, (6. (18)
t.

Then there exists u in B(6*, r) such that DR,(u) = 0.
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o We recall that f € F, and d’ € B such that F C B. Let us
compute the directional derivative of R,

Ra(f + th') — Ra(f)

DRy(f) - H = lim

t—0 t
e 5 i LG F(XG) + £ 1) — (Y5 (X))
t—0 t
i i1 02 (Y3 F(X0D) t H(XG) + € 98 (Y F(X0)) £ H7(X0)
t—0 t

with ¢ € [0, 1], and thus

DR, (f)- K :% Z l(Yi, F(X)) A (X;).
i=1



The DNN case

o In the same spirit, we get

D?Ry(f) Zaz (Y3, F(X)) H'(Xi)h(X;)-



The DNN case

o Based on these computations, Neuberger's theorem resorts to
obtaining a bound on the norm of an appropriate solution h to

the following linear system

72 a2 0(Y;, F(X;)) B (X)h(X;)
= —; Z (Y, £ (X)) (Xi)
i=1

for all f € B,(f*) and for all ' € B.
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o The idea is now to decouple the problem and

o first solve it in a Sobolev space, and then

o approximate the solution by a deep neural network

Simultaneous Neural Network Approximation for Smooth Functions

Sean Hon
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR
Haizhao Yang

Department of Mathematics, Purdue University, IN 47907, USA

Abstract

We establish in this work approximation results of deep neural networks for smooth func-
tions measured in Sobolev norms, motivated by recent development of numerical solvers
for partial differential equations using deep neural networks. Our approximation results
are nonasymptotic in the sense that the error bounds are explicitly characterized in terms
of both the width and depth of the networks simultaneously with all involved constants
exnlicitlv determined  Namelv for £ & (5(10 114) we chow that deen RellT networks of




The DNN case

Suppose that f* € C* ([0,1]¢) with s > 1 € N* satisfies
H('?afHLoo([o 1¢) < 1 for any o € N9 with |a| < k.




The DNN case

Suppose that f* € C* ([07 1]d) with s > 1 € N satisfies
||8“1‘||Loo([0 19) < 1 for any a € N9 with |a| < k.

Let f denote any estimator of *.




The DNN case

Theorem

Suppose that f* € C*([0,1]9) with s > 1 € NT satisfies
||8O‘f||Loo([071]d) < 1 for any a € N9 with |a| < k.

Let f denote any estimator of *.

Then there exists a neural network fW such that

1 = Fllugsopy < 30 + 1)7 851, 2060/ g —2s—h/d
k fe
: (1 + v max [tz ¢||Loo([o,1]d)>
c d/pfk k—d/p
6 (E)77 K oy




The DNN case

Theorem

Suppose that f* € C* ([0,1]9) with s > 1 € NT satisfies
||8°‘f||Loo([O’1]d) <1 for any a € N¥ with |a| < k.

Thus there is a deep network which does as well as any estimator f
of f*.
The architecteure constraints on this network are

width
16k911d( +2) log,(8

and depth

27K2( + 2) log, (4 )
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Sketch of the proof



The DNN case

Notice that for all f € Bs(fyy+), we have

T3 SO FO0) WO = = 37 (% F00) KX,
i=1

i=1
and that
1 0%
(Y:, £(X;)) W' (X H (X
Ly ) -1y

Then, using the fact that £ is the E% loss, Neuberger's condition
reads

n

% S H(X)h(X) = %Z W (X) (Y — = (X):
i=1

i=1



The DNN case

One possible solution can be obtained by setting
h(X,) = Y, — fW*(X,) =&
i=1,...,n,ie. using a noise interpolating solution.

One simple option is to take

=3 (%)

i=1

where ¢ : RP — R is a kernel function and o > 0 is a bandwidth.



The DNN case

Here, 1) denotes the bump function

ep (1— L) if[xI3 <1,

W(x) = ( 1| ||2> (19)
0 otherwise

and let ¢, = 9Y(-/0).

A

Pl N

-1 1

Y

Let ¥, = (/o).
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o Now, observe that, based on Assumption 1, the functions
¥((x — X;)/o), and their successive derivatives up to k,
i=1,...,n, have disjoint supports for with probability larger
than or equal to 1 — 4 as long as o < cn™ /7.

o We thus obtain that

[hlls < llellx [[¥ols

o Moreover, as is well known for subGaussian vectors, the norm
is controlled by

llell2 < 6Ken.

with probability at least 1 — exp(—n), combining the
conclusion of Theorem 13 follows from Neuberger’'s Theorem
8.
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The proof for the deep neural network case is completed by using
the approximation result of Hon and Wang.

Simultaneous Neural Network Approximation for Smooth Functions

Sean Hon
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR
Haizhao Yang

Department of Mathematics, Purdue University, IN 47907, USA

Abstract

We establish in this work approximation results of deep neural networks for smooth func-
tions measured in Sobolev norms, motivated by recent development of numerical solvers
for partial differential equations using deep neural networks. Our approximation results
are nonasymptotic in the sense that the error bounds are explicitly characterized in terms
of both the width and depth of the networks simultaneously with all involved constants
exnlicitlv determined  Namelv for £ & (25(I0 119) we show that deen RelllT netwarks of



The DNN case

o The number of layers may have to increase logarithmically
with the number of samples

o The total number of parameters blows up polynomially in the
number of samples and exponentially in the dimension of the
problem



The DNN case

Conclusion and perspectives



The DNN case

o This simple exercice in using quantitative zero finding
theorems such as Neuberger's theorem shows that we can
easily prove results that do not blow up with the number of
layers with interpolating networks

o We can easily study local minimisers as well using the same
technique

o We would need to explore approximation theory in
unusual/non standard directions:

o improve the Hon and Wang theorem by introducing the
constraint that the network be a flat minimiser

o This would explain that Stochastic Gradient
methods can find the correct approximation with
large probability (?)



The DNN case
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