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1. Supervised learning and supervised
operator.

Let X and ) be measurable spaces. In supervised
learning, we are given a data set of labeled
items:

Spn = {(z1,91), .-, @n,yn)} € ((X x V)", u™),

where p is an (unknown) probability measure
such that (zn,yn) € (X x Y, ). The goal of

a learner in this scenario is to find the best
approximation hg of the conditional probability
measure [My\x]- We refer to [“yl?f] as the
sSupervisor operator.



e Probm(X,Y) = Meas(X,P())) - the set of
all Markov kernels p : X xxy — [0,1] s.t. (1)
p(z.) € P(Y), (2) VA € Sy, p(A) 1 X =
R>(p is measurable.

)§( — (PO, Tw)

p

y/

> is the smallest o-algebra s.t. VA € 3y,

I4:P(Y)— R, u— u(A), is measurable.

e p is measurable and p is a morphism. (Lawvere
1962).



e Meas(X,Y) C Probm(X,)Y): f—dof.

e Regular conditional probability measures
Bxly € Probm(X,)).

e For T" € Probm(X,Y) and u € M(X) we
let Ty € M(Y) s,.t. VB € Iy,

Tou(A) = /X T(x)(A), du(z).

e For T' ¢ Probm(X,)) the graph
[ € Probm(X, X x )) is generated by

Frr: X =P X)), z— o T(x).



Theorem 1 (L. 2023)[Characterization of
regular conditional probability measure]

A probabilistic morphism T € Probm(X,)) is
a regular conditional probability measure of
e P(X x)Y) with respect to My : X x Y if
and only if

(Fr)spy = p

where py = (M)« pu.



2. Generative models of supervised learning
and correct loss functions.

A generative model of supervised learning is
a quintuple (X,V,H,R,Pxxy), Where H C
Meas(X, (P(YV),>Xw)) , Pxxy CP(Xx)Y) - a
set of all possible probability measures u s.t.
Li.d. (z,y) € (X xY,p), and R H x (PyyyU
Pemp(X X y)) — R U {+o0} is a risk/loss
function, whose minimizer of R, := R(u,-)
on ‘H are optimal predictors in the case u is
a distribution of observable data.



The aim of a learner is to find a ‘'successful”
algorithm

AU (X X Y)Y — H, Sy by, .

e In order to find a successful algorithm, it
IS important to know that a loss function
R,  H — R measures the deviation of a
predictor h € H from the supervisor operator

Hy|x-



e A loss function R :H X (PXXy U Pemp(X X

y)) — RU{+o0} will be called Py, -correct,
if 3 1 C Meas(X,P())) such that:

(1) H C H.

(2) Vi € Pyxy 3 heH st h = pyy.

(3) R is the restriction of a loss function
R:H x (PrxyUPemp(X x ¥)) = RU {400}
such that for any u € Pyxy

arg min R(h, u) = {h € H|[hluy = luy|2]}-
heH



A loss function R : H X (P}(Xy U Pemp(X X
y)) — R U {+oc} will be called correct, if R

is the restriction of a P(X x V)-correct loss
function R : H x P(X xY) = R U {4oo}.

e [0 define a correct loss function we need
a functional characterization of uyy, e.9.
Theorem 1.



eletd:P(X xY)xP(X,YV) = R>oU{oo} be
an arbitrary divergence. Then

R%: Probm(X,Y) x P(X x ) — R>0,

R(h, 1) = d((T ), 1)

IS a correct loss function by Theorem 1. For
instance, Kullback-Leiber divergence, square
loss function, and loss functions considered
by Vapnik-Stefanuyk, which we shall consider
next, are correct loss functions of this form.



3. A variant of Vapnik-Stefanyuk’s method
of proving the learnability and its consequence

e (VS) X CR", YV=Awq,...,wr}, h € H C
Probm(X,Y). Foru e P(X xY), py := (My)xu,
i€ [1,k], for v = (vy,...,vn) € R?, let

Fu(v,w;) = p([—oo,v1] X...x[—00, vn] x{w;}).

Letting h(w;|z) := h(z)(w;), Theorem 1 implies
(9
/_OO h(w;ilx)dpy(z) = Fu(v,w;) Vi € [1, k]

(3)



e Another example of Theorem 1: a function
p . I — R is a density function of a probability
measure p € P(I) if and only if

| " p(t)dt = Fu(z)Vz € R.

e Let us consider a general form of these
equations for conditional probability measure
feH C Probm(X,Y) for p € P(X x )

where F;, depends on p and needs not to be
the cummulative distribution function.



e In many cases f e (E1,dy1), Fue€ (Lo, do)

Ay is a continuous operator and the equation

(*) isill-posed, i.e. the solution of (*) violates

at least one of the 3 conditions of well-posedness
in Hadamard sense: exists, unique, stable

(the inverse operator A/jl is continuous). Methods
of solving ill-posed problems were proposed

by Tikhonov (variational/regularization method,
1943,1962). Let us consider

(Af = F) < f € arg min RO(f)
S



We consider variational perturbed unstable
equations

Ry (f) = di, (Af, Fo) +v(&)W ().

W(f)>0&W1(c) compact Ve e RT.

Theorem (‘I;ikhonov) If lim._ov(e) = 0O
and Iimgﬁoﬁ = 0 then

lim f-: = f,

e—0

fe € arg min Ry (f).



Stochastic ill-posed problem (Vapnik and Stefanuyk
1978-1998 for density, conditional density estimation
and estimation of pyy if #(Y) < 00).

F, and A, in Eq. (Auf = Fy) are unknown
but Ve>0
im p"{Sn € X : dp(Fpg, , Fu) > e} = 0.

n—oo
We need to measure the closedness of operators

||A +uf—A /fHEQ

A !
|| 22 || fEEl Wl/z(f)




e Theorem 2.(L. 2023) (A variant of Vapnik-
Stefanyuk’s theorem). Let fs, be a y7-minimizer
of Rf;l and f the solution of Af = F', where

Rj;l(f7 FSp ASl) — d%(ASlfa FSZ) + VZW(ﬂ-
Ve>0,C1,0o>0d~v >0s.t. Vv <o:
()™ {S1 € &2 p1(fs, f) > e} <

()51 € &= pa(Fs, F) > C1/}
+(p)™{S1 € & ¢ ||Ag, — Al > Cay/Ap}. (1)



e \We need to use outer measure and convergence
in outer probability, since it is complicated
and some time impossible to choose a measurable
learning algorithm which makes sense of all
involved formulas with measures in theory of
consistency of learning algorithms. Furthermore,
some classical formulas also use the fact that
uncountable of measurable subsets is measurable.

e TO apply this theorem need to find W and
estimate the second term in (2).



Examples of learnable overparameterized models
of supervised learning (L.-2023).

e ¥ = [0,1]" ¢ R" x {0} c R"t™m )y =
[0,1]™ c {0} x R™ C R ™™,

e Let Py, consist of probability measures

pr = fAn4m, Where A,,,, - the Lebesgue
measure on R*"*™, f ¢ C1(Xx %)) and moreover
f(z,y) >0 for all z,y € X x ).

K :RYTMxR™™ 5 R, (z,y) — exp(—|lz—y||3).

o H1 = CrL;ip(X,P(Y) %) - the space of Lipschitz
map to the metric space P(Y) z whose metric
K is induced via the kernel mean embedding
M - P(Y) = H(K).



e M (p) = [y K(y, )du(y) € H(K).
e Ho- a subspace in Cr;,(X,Y), which is

embedded in Hq via the composition with
the Dirac map § : Y — P(Y).

o Ry i HXPxyy, (hyp) — [[(Tp)spx—pll 7.



e Gaussian kernel K has the following properties.
(i) Ccl-differentiable.

(ii) the induced metric K via My defines
the weak topology on P(Y) (Sriperumbudur
2016),

(iii) good rate of convergence in probability
of ng — p (LopezPas-Muandet-Scholkopf-
Tolstikhin 2015).

e \We can use and PDS kernel K : R*1Tm x
R t™ 5 R with properties (i)- (iii) .



Theorem 3. (L. 2023) For i = 1,2, the
supervised learning model (X, Y, H;, Ry, Pxxy)
IS learnable using the algorithm in L&’ variant
of Vapnik-Stefanyuk’s theorem.

e VVapnik applied their theorem to finite dimensional
space of conditional densities on R.

o (X,V,H;i, Pyxxy) is the first “overparameterized”
model of supervised learning which is learnable.



5. Discussion of results

e Our generative model of supervised learning
(including characterizations of regular conditional
probability measures) encompasses main problems
of statistical inferences and offers unifying

and broader perspectives.

e Almost all classical algorithms for density
estimations can be obtained by using standard
regularization method of solving stochastic
problems Af = F where A is fixed and F' is
‘stochastically’” approximated.



e We have several different characterizations
of regular conditional probability measures
and using some of them we can extend Cucker-
Smale theorem for (1) regression problem
in Euclidean spaces to regression problem
in Hilbert spaces, and (2) to a problem of
estimating conditional probability where input
and label spaces are sitting in Euclidean spaces.



e Let us consider Bayesian statistical model
(©, no,p, X) where p € Probm(©, X). Then
the marginal (predictive) probability puy =

P)+He-

Theorem 4.(Jost-L.-Tran, 2021) q : X —
P(©) is a Bayesian inversion of p relative
to ug i.e. a regular conditional probability
measure of the joint distribution (I'p)«pe W.r.t.
My :© x X — X if and only if

APHIO = HO-



e Using Theorem 4, and motivated by the
concept of a correct loss function, we can
develop general Bayesian decision models
encompassing concepts of Bayesian inference,
classical Bayesian decision theory, which serve
as models for Bayesian methods for density
estimations and regression problems.
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