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1. Supervised learning and supervised
operator.

Let X and Y be measurable spaces. In supervised
learning, we are given a data set of labeled
items:

Sn = {(x1, y1), . . . , (xn, yn)} ∈ ((X × Y)n, µn),

where µ is an (unknown) probability measure
such that (xn, yn) ∈ (X × Y, µ). The goal of
a learner in this scenario is to find the best
approximation hSn of the conditional probability
measure [µY|X ]. We refer to [µY|X ] as the
supervisor operator.



• Probm(X ,Y) = Meas(X ,P(Y)) - the set of
all Markov kernels p : X×ΣY → [0,1] s.t. (1)
p(x.·) ∈ P(Y), (2) ∀A ∈ ΣY, p(·, A) : X →
R≥0 is measurable.
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Σw is the smallest σ-algebra s.t. ∀A ∈ ΣY
IA : P(Y)→ R, µ 7→ µ(A), is measurable.
δ(x) := δx.

• p is measurable and p is a morphism. (Lawvere
1962).



• Meas(X ,Y) ⊂ Probm(X ,Y) : f 7→ δ ◦ f .

• Regular conditional probability measures

µX|Y ∈ Probm(X ,Y).

• For T ∈ Probm(X ,Y) and µ ∈ M(X ) we

let T∗µ ∈M(Y) s,.t. ∀B ∈ ΣY

T∗µ(A) =
∫
X
T (x)(A), dµ(x).

• For T ∈ Probm(X ,Y) the graph

ΓT ∈ Probm(X ,X × Y) is generated by

ΓT : X → P(X × Y), x 7→ δx · T (x).



Theorem 1 (L. 2023)[Characterization of

regular conditional probability measure]

A probabilistic morphism T ∈ Probm(X ,Y) is

a regular conditional probability measure of

µ ∈ P(X × Y) with respect to ΠX : X × Y if

and only if

(ΓT )∗µX = µ

where µX = (ΠX )∗µ.



2. Generative models of supervised learning

and correct loss functions.

A generative model of supervised learning is

a quintuple (X ,Y,H, R,PX×Y), where H ⊂
Meas(X , (P(Y),Σw)) , PX×Y ⊂ P(X ×Y) - a

set of all possible probability measures µ s.t.

i.i.d. (x, y) ∈ (X ×Y, µ), and R : H×
(
PX×Y ∪

Pemp(X × Y)
)
→ R ∪ {+∞} is a risk/loss

function, whose minimizer of Rµ := R(µ, ·)
on H are optimal predictors in the case µ is

a distribution of observable data.



The aim of a learner is to find a “successful”

algorithm

A : ∪∞i=1(X × Y)n →H, Sn 7→ hSn.

• In order to find a successful algorithm, it

is important to know that a loss function

Rµ : H → R measures the deviation of a

predictor h ∈ H from the supervisor operator

µY|X .



• A loss function R : H×
(
PX×Y ∪ Pemp(X ×

Y)
)
→ R∪{+∞} will be called PX×Y-correct,

if ∃ H̃ ⊂Meas(X ,P(Y)) such that:

(1) H ⊂ H̃.

(2) ∀µ ∈ PX×Y ∃ h ∈ H̃ s.t. h = µY|X .

(3) R is the restriction of a loss function

R̃ : H̃ ×
(
PX×Y ∪ Pemp(X × Y)

)
→ R ∪ {+∞}

such that for any µ ∈ PX×Y

arg min
h∈H̃

R̃(h, µ) = {h ∈ H̃| [h]µX = [µY|X ]}.



A loss function R : H ×
(
PX×Y ∪ Pemp(X ×

Y)
)
→ R ∪ {+∞} will be called correct, if R

is the restriction of a P(X × Y)-correct loss

function R̃ : H×P(X × Y)→ R ∪ {+∞}.

• To define a correct loss function we need

a functional characterization of µY|X , e.g.

Theorem 1.



• Let d : P(X × Y)× P(X ,Y)→ R≥0 ∪ {∞} be

an arbitrary divergence. Then

Rd : Probm(X ,Y)× P(X × Y)→ R≥0,

Rd(h, µ) = d((Γh)∗µX , µ)

is a correct loss function by Theorem 1. For

instance, Kullback-Leiber divergence, square

loss function, and loss functions considered

by Vapnik-Stefanuyk, which we shall consider

next, are correct loss functions of this form.



3. A variant of Vapnik-Stefanyuk’s method

of proving the learnability and its consequence

• (VS) X ⊂ Rn, Y = {w1, . . . , wk}, h ∈ H ⊂
Probm(X ,Y). For µ ∈ P(X × Y), µX := (ΠX )∗µ,
i ∈ [1, k], for v = (v1, . . . , vn) ∈ Rn, let

Fµ(v, ωi) := µ([−∞, v1]×. . .×[−∞, vn]×{wi}).

Letting h(wi|x) := h(x)(wi), Theorem 1 implies∫ v
−∞

h(ωi|x)dµX (x) = Fµ(v, ωi) ∀i ∈ [1, k]

(3)⇐⇒h = µY|X .



• Another example of Theorem 1: a function

p : I → R is a density function of a probability

measure µ ∈ P(I) if and only if∫ x
−∞

p(t)dt = Fµ(x) ∀x ∈ R.

• Let us consider a general form of these

equations for conditional probability measure

f ∈ H ⊂ Probm(X ,Y) for µ ∈ P(X × Y)

(∗). Aµf = Fµ

where Fµ depends on µ and needs not to be

the cummulative distribution function.



• In many cases f ∈ (E1, d1), Fµ ∈ (E2, d2)

Aµ is a continuous operator and the equation

(*) is ill-posed, i.e. the solution of (*) violates

at least one of the 3 conditions of well-posedness

in Hadamard sense: exists, unique, stable

(the inverse operator A−1
µ is continuous). Methods

of solving ill-posed problems were proposed

by Tikhonov (variational/regularization method,

1943,1962). Let us consider

(Af = F )⇐⇒ f ∈ arg min
f∈E1

R0(f)



We consider variational perturbed unstable

equations

Rγ(ε)(f) = d2
E2

(Af, Fε) + γ(ε)W (f).

W (f) ≥ 0 &W−1(c) compact ∀c ∈ R+.

Theorem (Tikhonov) If limε→0 γ(ε) = 0

and limε→0
ε2

γ(ε) = 0 then

lim
ε→0

fε = f,

fε ∈ arg min
f∈E1

Rγ(ε)(f).



Stochastic ill-posed problem (Vapnik and Stefanuyk

1978-1998 for density, conditional density estimation

and estimation of µY|X if #(Y) <∞).

Fµ and Aµ in Eq. (Aµf = Fµ) are unknown

but ∀ ε > 0

lim
n→∞µ

n{Sn ∈ Xn : dE(FµSn, Fµ) > ε} = 0.

We need to measure the closedness of operators

Aµ, AµSn : E1 → E2.

‖Aµ −Aµ′‖ := sup
f∈E1

‖A+ µf −Aµ′f‖E2

W1/2(f)
.



•Theorem 2.(L. 2023) (A variant of Vapnik-

Stefanyuk’s theorem). Let fSl be a γ2
l -minimizer

of R∗γl and f the solution of Af = F , where

R∗γl(f̂ , FSl, ASl) = d2
E(ASlf̂ , FSl) + γlW (f̂).

∀ ε > 0, C1, C2 > 0 ∃ γ0 > 0 s.t. ∀ γl ≤ γ0:

(µl)
∗{Sl ∈ Xl : ρ1(fSl, f) > ε} ≤

(µl)
∗{Sl ∈ Xl : ρ2(FSl, F ) > C1

√
γl}

+(µl)
∗{Sl ∈ Xl : ‖ASl −A‖ > C2

√
γl}. (1)



•We need to use outer measure and convergence

in outer probability, since it is complicated

and some time impossible to choose a measurable

learning algorithm which makes sense of all

involved formulas with measures in theory of

consistency of learning algorithms. Furthermore,

some classical formulas also use the fact that

uncountable of measurable subsets is measurable.

• To apply this theorem need to find W and

estimate the second term in (2).



Examples of learnable overparameterized models
of supervised learning (L.-2023).
• X = [0,1]n ⊂ Rn × {0} ⊂ Rn+m, Y =
[0,1]m ⊂ {0} ×Rm ⊂ Rn+m.
• Let PX×Y consist of probability measures
µf := fλn+m, where λn+m - the Lebesgue
measure on Rn+m, f ∈ C1(X×Y) and moreover
f(x, y) > 0 for all x, y ∈ X × Y.

K : Rn+m×Rn+m → R, (x, y) 7→ exp(−‖x−y‖22).

• H1 = CLip(X ,P(Y)K̃) - the space of Lipschitz
map to the metric space P(Y)K̃ whose metric
K̃ is induced via the kernel mean embedding
MK : P(Y)→H(K).



• MK(µ) =
∫
Y K(y, ·)dµ(y) ∈ H(K).

• H2- a subspace in CLip(X ,Y), which is

embedded in H1 via the composition with

the Dirac map δ : Y → P(Y).

• RK : H×PX×Y, (h, µ) 7→ ‖(Γh)∗µX−µ‖K̃.



• Gaussian kernel K has the following properties.

(i) C1-differentiable.

(ii) the induced metric K̃ via MK defines
the weak topology on P(Y) (Sriperumbudur
2016),

(iii) good rate of convergence in probability
of µSn → µ (LopezPas-Muandet-Schölkopf-
Tolstikhin 2015).

• We can use and PDS kernel K : Rn+m ×
Rn+m → R with properties (i)- (iii) .



Theorem 3. (L. 2023) For i = 1,2, the

supervised learning model (X ,Y,Hi, RK,PX×Y)

is learnable using the algorithm in Lê’ variant

of Vapnik-Stefanyuk’s theorem.

• Vapnik applied their theorem to finite dimensional

space of conditional densities on R.

• (X ,Y,Hi,PX×Y) is the first “overparameterized”

model of supervised learning which is learnable.



5. Discussion of results

•Our generative model of supervised learning

(including characterizations of regular conditional

probability measures) encompasses main problems

of statistical inferences and offers unifying

and broader perspectives.

• Almost all classical algorithms for density

estimations can be obtained by using standard

regularization method of solving stochastic

problems Af = F where A is fixed and F is

‘stochastically” approximated.



• We have several different characterizations

of regular conditional probability measures

and using some of them we can extend Cucker-

Smale theorem for (1) regression problem

in Euclidean spaces to regression problem

in Hilbert spaces, and (2) to a problem of

estimating conditional probability where input

and label spaces are sitting in Euclidean spaces.



• Let us consider Bayesian statistical model

(Θ, µΘ,p,X ) where p ∈ Probm(Θ,X ). Then

the marginal (predictive) probability µX =

p)∗µΘ.

Theorem 4.(Jost-L.-Tran, 2021) q : X →
P(Θ) is a Bayesian inversion of p relative

to µΘ i.e. a regular conditional probability

measure of the joint distribution (Γp)∗µΘ w.r.t.

ΠX : Θ×X → X if and only if

q∗p∗µΘ = µΘ.



• Using Theorem 4, and motivated by the

concept of a correct loss function, we can

develop general Bayesian decision models

encompassing concepts of Bayesian inference,

classical Bayesian decision theory, which serve

as models for Bayesian methods for density

estimations and regression problems.
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