Bayesian Clustering of Curves with Applications to Juvenile and Hominin Cochlear Shapes

Anis Fradi, Chafik Samir, and José Braga

MLOMA December 21, 2023

Clermont, France

UCA-LIMOS

Bayesian inference: Some applications

Bayesian inference: derives the posterior probability from a "prior" information and a "likelihood" function from the observed data.

Introduction and Background

Problem formulation

◆ Main idea and proposed solution

The algorithm

Experimental results

Definition

In differential geometry, a **Riemannian manifold** (M, g) is a nonlinear space M equipped with a positive-definite inner product g on the tangent space T_pM at each point p.

Introduction: Shapes of curves

Definition

A **shape** is the geometrical information that remains when affine transformations (translation, scaling and rotation) are filtered out.

 ◆ Shape analysis of curves deals with the Generalized Procrustes Analysis (GPA) algorithm where the curve is represented with *n* landmarks in ℝ^d ⇒ finite vectors on the sphere.

◆ Shape analysis of curves deals with the tangent PCA (TPCA) ⇒
 finite vectors projected into the tangent space of the sphere + PCA.

Anis Fradi

Introduction: Gaussian process (GP)

- A covariance is a bi-variate function c : ℝ × ℝ → ℝ; (x, x') → c(x, x') that characterizes the dependence between two random variables.
- ◆ A function $f : \mathbb{R} \to \mathbb{R}$ is modeled with a centered **GP**, denoted $f \sim \mathcal{GP}(0, c)$, if $\mathbf{f} = (f(x_1), ..., f(x_N))^T \sim \mathcal{N}(0, \mathbf{C})$ for any $N \ge 1$.
- ◆ C refers to the covariance matrix constructed from the covariance function c such that: C_{ij} = c(x_i, x_j) = cov(f(x_i), f(x_j)).

An example of a GP regression model:

Anis Fradi

Problem formulation

Observations:

 β_1, \ldots, β_N where $\beta_i : I = [0, 1] \rightarrow \mathbb{R}^d$; $d \ge 1$.

♦ <u>Goal:</u>

Assign each curve to one of K clusters with $K \ll N$.

Problem:

In practice, we can not observe all β_i .

Notations:

- Let $\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)$ be a discretization of *I*.
- We only observe a discretization of β_i, i.e., β_i ∘ F(ξ) where F is a reparametrization, identified with a cumulative distribution function (CDF) defined on I = [0, 1], belonging to

$$\mathcal{F} = \left\{ F: I
ightarrow I \mid F(0) = 0, \ F(1) = 1, \ \mathsf{and} \ \dot{F} \ \mathsf{is nonnegative}
ight\}$$

References: Kendall (1984) ; Srivastava et al. (2011).

Anis Fradi

- 白 ト - (同 ト - (回 ト -) 回

Examples of F and β : d = 3 and n = 100

Figure: *F* is the **uniform** CDF on *I*: $F(\xi) = \xi$ and $\beta \circ F(\xi)$.

Figure: The same curve β with two **different** CDFs F_1 and F_2 . The difference in locations is $||\beta \circ F_1 - \beta \circ F_2|| \neq 0$.

Main idea

Issues:

 $\textcircled{0} \ \mathcal{F} \text{ is a } \textbf{group} \text{ of diffeomorphisms without any geometric structure.}$

② Minimizing a cost function on $F \in \mathcal{F}$ is complicated and intractable.

Solutions:

 $\textbf{0} \hspace{0.1 in} \mathcal{F} \hspace{0.1 in} \text{is isometrically mapped to the Hilbert } \textbf{upper-hemisphere} \\$

$$\mathcal{H} = \left\{ \psi \equiv \sqrt{\dot{F}} \mid \psi \text{ is nonnegative, and } ||\psi||_{\mathbb{L}^2} = \left(\int_I \psi(t)^2 dt \right)^{1/2} = 1 \right\}$$

2 $(\mathcal{H}, < ., . >_{\mathbb{L}^2})$ is a complete **Riemannian manifold**.

Given ψ ∈ H and g ∈ T_ψ(H) the geodesic path with an initial position ψ and a direction g at any time instant t satisfies

$$\psi(t) = \cos\left(t||g||_{\mathbb{L}^2}\right)\psi + \sin\left(t||g||_{\mathbb{L}^2}\right)\frac{g}{||g||_{\mathbb{L}^2}}$$

CDF expansion

• If
$$\psi \sim \mathcal{GP}(0, c) \implies$$
 Its Karhunen-Loève expansion is
 $\psi(t) = \sum_{l=1}^{\infty} a_l \phi_l(t)$, with $a_l \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \lambda_l)$ and $(\phi_l)_l$ is a \mathbb{L}^2 basis

 $\hookrightarrow (\lambda_I)_I$ and $(\phi_I)_I$ refers to **eigen-values** and **eigen-functions** of c.

• Identifying ψ and F with their **truncated versions** at order m

$$\psi_m(t) = \sum_{l=1}^m a_l \phi_l(t)$$
 and $F_m(\xi) = \int_0^\xi \psi_m^2(t) dt$

Proposition

$$F_m$$
 is a CDF if and only if $A = \left(a_1, \ldots, a_m
ight)^T \in \mathcal{S}^{m-1}$ where

$$S^{m-1} = \left\{ A \in \mathbb{R}^m \mid ||A||_2 = \left(\sum_{l=1}^m a_l^2\right)^{1/2} = 1
ight\}$$

Square-root velocity function (SRVF)

Problems:

● The L² metric is not a good choice to quantify the dissimilarity between curves ⇒ The elastic metric.

② The implementation of the elastic metric is hard in practice.

Solutions:

() A curve β can be represented by its **SRVF** (or *q*-function)

$$egin{array}{rcl} q:I&
ightarrow&\mathbb{R}^d\ \xi&\mapsto&q(\xi)=egin{cases}rac{\doteta(\xi)}{\sqrt{||\doteta(\xi)||_2}}& ext{if}\ \doteta(\xi)
eq 0.\ 0& ext{otherwise}. \end{array}$$

2 $\beta \circ F$ is then represented by

$$q^*(\xi) = \sqrt{\dot{F}(\xi)}q(F(\xi))$$

UCA-LIMOS

Advantages of SRVF

- The elastic metric defined on the shape space of curves β reduces to a L² metric on the space of SRVFs q.
- ◆ Invariance to: translation, scaling, rotation and reparametrization since ||q₁^{*} − q₂^{*}|| = ||q₁ − q₂||.
- Given a random sample q₁,..., q_N, their Fréchet mean q̃(ξ) minimizing the Fréchet variance

$$\mathbb{V}(q) = rac{1}{N}\sum_{i=1}^{N}\inf_{F_i\in\mathcal{F}}||q-q_i^*||^2$$

results to be the **Euclidean mean**, i.e., $\tilde{q}(\xi) = \frac{1}{N} \sum_{i=1}^{N} q_i^*(\xi)$.

Example of true and observed curves (N = 2, K = 2, $\sigma^2 = 0.1$)

True curve to be estimated for *k*-th cluster: $\tilde{q}^{k}(\boldsymbol{\xi}), k = 1, ..., K$

Observed curve: $q_i^*(\boldsymbol{\xi})|C_i = k \sim \mathcal{N}(\tilde{q}^k(\boldsymbol{\xi}), \sigma^2 \mathcal{I}), i = 1, ..., N$

Bayesian clustering with GMM: K clusters

Finding the **optimal** truncated CDF F_m^k depending on A^k for k-th cluster.

Assumptions

• Let
$$\pi_k = \mathbb{P}(C_i = k)$$
 with $k = 1, \ldots, K$.

• Let
$$q_i^*(\boldsymbol{\xi})|C_i = k \sim \mathcal{N}(\tilde{q}^k(\boldsymbol{\xi}), \sigma^2 \mathcal{I}).$$

Bayesian inference on coefficients A^k

Spherical Hamiltonian Monte Carlo (HMC) sampling: 10⁴ iterations

Figure: The **Markov chain** trajectory of: a_1^1 (a) and (a_1^1, a_2^1) (b). The nonparametric **density estimation** of: a_1^1 (c) and (a_1^1, a_2^1) (d).

Experimental results: Methods

• <u>Our method</u>: spherical HMC sampling for A^k with an extra MCMC sampling for π_k , $\tilde{q}^{k,m}(\boldsymbol{\xi})$, and σ^2 .

Probability that i-th curve belongs to k-th cluster

$$\mathbb{P}(C_i = k | q_i) = \frac{\pi_k \exp\left(-\frac{1}{2\sigma^2} ||q_i^*(\boldsymbol{\xi}) - \tilde{q}^{k,m}(\boldsymbol{\xi})||_2^2\right)}{\sum_{k=1}^K \pi_k \exp\left(-\frac{1}{2\sigma^2} ||q_i^*(\boldsymbol{\xi}) - \tilde{q}^{k,m}(\boldsymbol{\xi})||_2^2\right)}$$

Comparison:

- GPA-kmeans and GPA-kmedoids, when applying the GPA to $\beta_i(\boldsymbol{\xi})$ \implies vectors belonging to $S^{nd-d-1-\frac{1}{2}d(d-1)}$.
- ② TPCA-kmeans and TPCA-GMM, when applying the PCA to shape vectors projected onto the tangent space of the sphere ⇒ vectors belonging to ℝ² or ℝ³.

Experimental results: First dataset

- Dataset: 94 cochlea for juvenile.
- Dimension: $n \times d = 200 \times 3$.
- Cluster 1: girls & Cluster 2: boys.

Cluster of girls (blue) and Cluster of boys (red).

Table: Mean clustering error (MCE), specificity (SP) and sensibility (SE) for juvenile cochlea.

Methods	MCE	SP	SE
TPCA-GMM	41.75%	58.07%	58.5%
TPCA-kmeans	41.54%	58.44%	58.5%
GPA-kmeans	25.11%	74.4%	75.45%
GPA-kmedoids	10.85%	89.8%	88.41%
Proposed	4.26 %	94%	97.73%

Experimental results: Second dataset

- Dataset: 80 cochlea for hominin.
- Dimension: $n \times d = 200 \times 3$.
- Cluster 1: Modern humans (HSS) & Cluster 2: Paranthropus (PAR) & Cluster 3: Gorillas (GOR) & Cluster 4: Chimpanzees (PAN) & Cluster 5: Australopithecus (AUS).

Figure: The Fréchet mean of each cluster.

		_	
A	nis	⊢r:	adı

Experimental results: Accuracy rates

The probability: $\mathbb{P}(C_i = k | q_i)$.

Table: Mean clustering error (MCE) for hominin cochlea.

Methods	MCE
TPCA-GMM	15%
TPCA-kmeans	20%
GPA-kmeans	12.5%
GPA-kmedoids	10%
Proposed	0%

MLOMA-23

TPCA with PC1= 82.5% and PC2= 10.2% of variance.

•		_	
- 14	nic	- F	- nd -

MLOMA-23

Thank you for your attention !!!

CNRS PRIME research project. More details about cochlear data collection and analysis:

jose.braga@univ-tlse3.fr

chafik.samir@uca.fr