Bayesian Clustering of Curves with Applications to Juvenile and Hominin Cochlear Shapes

Anis Fradi, Chafik Samir, and José Braga

MLOMA December 21, 2023
Clermont, France

Bayesian inference: Some applications

Bayesian inference: derives the posterior probability from a "prior" information and a "likelihood" function from the observed data.

Models:

Applications:

Vectors

Signals

Functions

Shapes

Contents

- Introduction and Background
- Problem formulation
- Main idea and proposed solution
- The algorithm
- Experimental results

Introduction: Riemannian manifold

Definition

In differential geometry, a Riemannian manifold (M, g) is a nonlinear space M equipped with a positive-definite inner product g on the tangent space $T_{p} M$ at each point p.

Introduction: Shapes of curves

Definition

A shape is the geometrical information that remains when affine transformations (translation, scaling and rotation) are filtered out.

translation

scaling

rotation

- Shape analysis of curves deals with the Generalized Procrustes Analysis (GPA) algorithm where the curve is represented with n landmarks in $\mathbb{R}^{d} \Longrightarrow$ finite vectors on the sphere.
- Shape analysis of curves deals with the tangent PCA (TPCA) \Longrightarrow finite vectors projected into the tangent space of the sphere $+P \mathrm{PCA}_{\text {, }}$

Introduction: Gaussian process (GP)

- A covariance is a bi-variate function $c: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} ;\left(x, x^{\prime}\right) \mapsto c\left(x, x^{\prime}\right)$ that characterizes the dependence between two random variables.
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is modeled with a centered $\mathbf{G P}$, denoted $f \sim \mathcal{G} \mathcal{P}(0, c)$, if $\mathbf{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{N}\right)\right)^{T} \sim \mathcal{N}(0, \mathbf{C})$ for any $N \geq 1$.
- C refers to the covariance matrix constructed from the covariance function c such that: $\mathbf{C}_{i j}=c\left(x_{i}, x_{j}\right)=\operatorname{cov}\left(f\left(x_{i}\right), f\left(x_{j}\right)\right)$.
- An example of a GP regression model:

Problem formulation

- Observations:
$\beta_{1}, \ldots, \beta_{N}$ where $\beta_{i}: I=[0,1] \rightarrow \mathbb{R}^{d} ; d \geq 1$.
- Goal:

Assign each curve to one of K clusters with $K \ll N$.

- Problem:

In practice, we can not observe all β_{i}.

- Notations:
- Let $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ be a discretization of \boldsymbol{I}.
- We only observe a discretization of β_{i}, i.e., $\beta_{i} \circ F(\xi)$ where F is a reparametrization, identified with a cumulative distribution function (CDF) defined on $I=[0,1]$, belonging to

$$
\mathcal{F}=\{F: I \rightarrow I \mid F(0)=0, F(1)=1, \text { and } \dot{F} \text { is nonnegative }\}
$$

\square References:
Kendall (1984) ; Srivastava et al. (2011).

Examples of F and $\beta: d=3$ and $n=100$

Figure: F is the uniform CDF on $I: F(\xi)=\xi$ and $\beta \circ F(\xi)$.

Figure: The same curve β with two different $\operatorname{CDFs} F_{1}$ and F_{2}. The difference in locations is $\left\|\beta \circ F_{1}-\beta \circ F_{2}\right\| \neq 0$.

Main idea

- Issues:
(1) \mathcal{F} is a group of diffeomorphisms without any geometric structure.
(2) Minimizing a cost function on $F \in \mathcal{F}$ is complicated and intractable.
- Solutions:
(1) \mathcal{F} is isometrically mapped to the Hilbert upper-hemisphere

$$
\mathcal{H}=\left\{\psi \equiv \sqrt{\dot{F}} \mid \psi \text { is nonnegative, and }\|\psi\|_{\mathbb{L}^{2}}=\left(\int_{I} \psi(t)^{2} d t\right)^{1 / 2}=1\right\}
$$

(2) $\left(\mathcal{H},\langle, .,\rangle_{\mathbb{L}^{2}}\right)$ is a complete Riemannian manifold.
(3) Given $\psi \in \mathcal{H}$ and $g \in T_{\psi}(\mathcal{H})$ the geodesic path with an initial position ψ and a direction g at any time instant t satisfies

$$
\psi(t)=\cos \left(t\|g\|_{\mathbb{L}^{2}}\right) \psi+\sin \left(t\|g\|_{\mathbb{L}^{2}}\right) \frac{g}{\|g\|_{\mathbb{L}^{2}}}
$$

CDF expansion

- If $\psi \sim \mathcal{G P}(0, c) \Longrightarrow$ Its Karhunen-Loève expansion is

$$
\psi(t)=\sum_{l=1}^{\infty} a_{l} \phi_{l}(t), \text { with } a_{l} \stackrel{\text { ind }}{\sim} \mathcal{N}\left(0, \lambda_{l}\right) \text { and }\left(\phi_{l}\right)_{l} \text { is a } \mathbb{L}^{2} \text { basis }
$$

$\hookrightarrow\left(\lambda_{l}\right)_{l}$ and $\left(\phi_{l}\right)_{l}$ refers to eigen-values and eigen-functions of c.

- Identifying ψ and F with their truncated versions at order m

$$
\psi_{m}(t)=\sum_{l=1}^{m} a_{l} \phi_{l}(t) \quad \text { and } \quad F_{m}(\xi)=\int_{0}^{\xi} \psi_{m}^{2}(t) d t
$$

Proposition

F_{m} is a CDF if and only if $A=\left(a_{1}, \ldots, a_{m}\right)^{T} \in \mathcal{S}^{m-1}$ where

$$
\mathcal{S}^{m-1}=\left\{A \in \mathbb{R}^{m} \mid\|A\|_{2}=\left(\sum_{l=1}^{m} a_{l}^{2}\right)^{1 / 2}=1\right\}
$$

Square-root velocity function (SRVF)

- Problems:
(1) The \mathbb{L}^{2} metric is not a good choice to quantify the dissimilarity between curves \Longrightarrow The elastic metric.
(2) The implementation of the elastic metric is hard in practice.
- Solutions:
(1) A curve β can be represented by its SRVF (or q-function)

$$
\begin{aligned}
q: I & \rightarrow \mathbb{R}^{d} \\
\xi & \mapsto q(\xi)=\left\{\begin{array}{ll}
\frac{\dot{\beta}(\xi)}{\sqrt{\|\dot{\beta}(\xi)\|_{2}}} & \text { if } \dot{\beta}(\xi) \neq 0 . \\
0 & \text { otherwise. }
\end{array} .\right.
\end{aligned}
$$

(2) $\beta \circ F$ is then represented by

$$
q^{*}(\xi)=\sqrt{\dot{F}(\xi)} q(F(\xi))
$$

Advantages of SRVF

- The elastic metric defined on the shape space of curves β reduces to a \mathbb{L}^{2} metric on the space of SRVFs q.
- Invariance to: translation, scaling, rotation and reparametrization since $\left\|q_{1}^{*}-q_{2}^{*}\right\|=\left\|q_{1}-q_{2}\right\|$.
- Given a random sample q_{1}, \ldots, q_{N}, their Fréchet mean $\tilde{q}(\xi)$ minimizing the Fréchet variance

$$
\mathbb{V}(q)=\frac{1}{N} \sum_{i=1}^{N} \inf _{F} \in \mathcal{F}\left\|q-q_{i}^{*}\right\|^{2}
$$

results to be the Euclidean mean, i.e., $\tilde{q}(\xi)=\frac{1}{N} \sum_{i=1}^{N} q_{i}^{*}(\xi)$.

Example of true and observed curves

 ($N=2, K=2, \sigma^{2}=0.1$)True curve to be estimated for k-th cluster: $\tilde{q}^{k}(\xi), k=1, \ldots, K$

Observed curve: $q_{i}^{*}(\xi) \mid C_{i}=$ $k \sim \mathcal{N}\left(\tilde{q}^{k}(\xi), \sigma^{2} \mathcal{I}\right), i=1, \ldots, N$

Bayesian clustering with GMM: K clusters

Finding the optimal truncated CDF F_{m}^{k} depending on A^{k} for k-th cluster.

Assumptions

- Let $\pi_{k}=\mathbb{P}\left(C_{i}=k\right)$ with $k=1, \ldots, K$.
- Let $q_{i}^{*}(\xi) \mid C_{i}=k \sim \mathcal{N}\left(\tilde{q}^{k}(\xi), \sigma^{2} \mathcal{I}\right)$.

Bayesian inference on coefficients A^{k}

- Likelihood:

$$
\begin{aligned}
& \mathbb{P}\left(q_{1}, \ldots, q_{N} \mid A^{1}, \ldots, A^{K}, \pi_{1}, \ldots, \pi_{K}, \tilde{q}^{1, m}(\boldsymbol{\xi}), \ldots, \tilde{q}^{K, m}(\boldsymbol{\xi}), \sigma^{2}\right) \propto \\
& \prod_{i=1}^{N}\left(\sum_{k=1}^{K} \pi_{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|q_{i}^{*}(\boldsymbol{\xi})-\tilde{q}^{k, m}(\boldsymbol{\xi})\right\|_{2}^{2}\right)\right)
\end{aligned}
$$

- Prior: $\mathbb{P}\left(A^{k}\right) \propto \exp \left(-\frac{1}{2} \sum_{l=1}^{m} \frac{a_{1}^{k^{2}}}{\lambda_{l}}\right) \times \delta_{\left\{A^{k} \in \mathcal{S}^{m-1}\right\}}$
- Log-posterior:

$\sum_{i=1}^{N} \log \left(\sum_{k=1}^{K} \pi_{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|q_{i}^{*}(\boldsymbol{\xi})-\tilde{q}^{k, m}(\boldsymbol{\xi})\right\|_{2}^{2}\right)\right)-\frac{1}{2} \sum_{k=1}^{K} \sum_{l=1}^{m} \frac{a_{l}^{k^{2}}}{\lambda_{l}}$

Spherical Hamiltonian Monte Carlo (HMC) sampling: 10^{4}

 iterations

Figure: The Markov chain trajectory of: a_{1}^{1} (a) and (a_{1}^{1}, a_{2}^{1}) (b). The nonparametric density estimation of: a_{1}^{1} (c) and $\left(a_{1}^{1}, a_{2}^{1}\right)(\mathrm{d})$.

Experimental results: Methods

- Our method: spherical HMC sampling for A^{k} with an extra MCMC sampling for $\pi_{k}, \tilde{q}^{k, m}(\boldsymbol{\xi})$, and σ^{2}.
- Probability that i-th curve belongs to k-th cluster

$$
\mathbb{P}\left(C_{i}=k \mid q_{i}\right)=\frac{\pi_{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|q_{i}^{*}(\boldsymbol{\xi})-\tilde{q}^{k, m}(\boldsymbol{\xi})\right\|_{2}^{2}\right)}{\sum_{k=1}^{K} \pi_{k} \exp \left(-\frac{1}{2 \sigma^{2}}\left\|q_{i}^{*}(\boldsymbol{\xi})-\tilde{q}^{k, m}(\boldsymbol{\xi})\right\|_{2}^{2}\right)}
$$

- Comparison:
(1) GPA-kmeans and GPA-kmedoids, when applying the GPA to $\beta_{i}(\boldsymbol{\xi})$ \Longrightarrow vectors belonging to $\mathcal{S}^{\text {nd-d-1-1 }} d(d-1)$.
(2) TPCA-kmeans and TPCA-GMM, when applying the PCA to shape vectors projected onto the tangent space of the sphere \Longrightarrow vectors belonging to \mathbb{R}^{2} or \mathbb{R}^{3}.

Experimental results: First dataset

- Dataset: 94 cochlea for juvenile.
- Dimension: $n \times d=200 \times 3$.
- Cluster 1: girls \& Cluster 2: boys.

Cluster of girls (blue) and Cluster of boys (red).

The optimal reparametrization

The Fréchet mean

Experimental results: Clustering

Cluster of girls (blue) and Cluster of boys (red).

The probability $\mathbb{P}\left(C_{i}=1 \mid q_{i}\right)$

The resulting cluster

Experimental results: Accuracy rates

Table: Mean clustering error (MCE), specificity (SP) and sensibility (SE) for juvenile cochlea.

Methods	MCE	SP	SE
TPCA-GMM	41.75%	58.07%	58.5%
TPCA-kmeans	41.54%	58.44%	58.5%
GPA-kmeans	25.11%	74.4%	75.45%
GPA-kmedoids	10.85%	89.8%	88.41%
Proposed	$\mathbf{4 . 2 6} \%$	$\mathbf{9 4} \%$	$\mathbf{9 7 . 7 3} \%$

Experimental results: Second dataset

- Dataset: 80 cochlea for hominin.
- Dimension: $n \times d=200 \times 3$.
- Cluster 1: Modern humans (HSS) \& Cluster 2: Paranthropus (PAR) \& Cluster 3: Gorillas (GOR) \& Cluster 4: Chimpanzees (PAN) \& Cluster 5: Australopithecus (AUS).

Figure: The Fréchet mean of each cluster.

Experimental results: Accuracy rates

The probability: $\mathbb{P}\left(C_{i}=k \mid q_{i}\right)$.

Table: Mean clustering error (MCE) for hominin cochlea.

Methods	MCE
TPCA-GMM	15%
TPCA-kmeans	20%
GPA-kmeans	12.5%
GPA-kmedoids	10%
Proposed	$\mathbf{0 \%}$

Experimental results: Illustration

TPCA with PC1 $=82.5 \%$ and $P C 2=10.2 \%$ of variance.

Thank you for your attention !!!

CNRS PRIME research project.
More details about cochlear data collection and analysis:

jose.braga@univ-tlse3.fr
chafik.samir@uca.fr

