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Bayesian inference: Some applications

Bayesian inference: derives the posterior probability from a "prior"
information and a "likelihood" function from the observed data
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Introduction: Riemannian manifold

Definition
In differential geometry, a Riemannian manifold (M, g) is a nonlinear
space M equipped with a positive-definite inner product g on the tangent

space T,M at each point p.
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Introduction: Shapes of curves

Definition
A shape is the geometrical information that remains when affine
transformations (translation, scaling and rotation) are filtered out.
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@ Shape analysis of curves deals with the Generalized Procrustes
Analysis (GPA) algorithm where the curve is represented with n
landmarks in R = finite vectors on the sphere.

@ Shape analysis of curves deals with the tangent PCA (TPCA) —

finite vectors projected into the tangent space of the sphere + PCA.
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Introduction: Gaussian process (GP)

@ A covariance is a bi-variate function ¢ : R xR — R; (x, x") — ¢(x, x’)
that characterizes the dependence between two random variables.

@ A function f : R — R is modeled with a centered GP, denoted
f ~GP(0,c), if f=(f(x1),..., F(xn))" ~ N(0,C) for any N > 1.

@ C refers to the covariance matrix constructed from the covariance
function ¢ such that: Cj; = c(x;, x;) = cov(f(x;), f(x;)).

@ An example of a GP regression model:

I
o
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Problem formulation

@ Observations:

Bi,...,Bn where B; : 1 =1[0,1] = R?; d > 1.
& Goal:

Assign each curve to one of K clusters with K << N.
€ Problem:

In practice, we can not observe all ;.

€ Notations:
o Let &£ =(&,...,&,) be a discretization of /.

o We only observe a discretization of j3;, i.e., 5; o F(&) where F is a
reparametrization, identified with a cumulative distribution function
(CDF) defined on / = [0, 1], belonging to

F = {F: | —1]F(0)=0, F(1) =1, and F is nonnegative}

[J References:
Kendall (1984) ; Srivastava et al. (2011).
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Examples of F and 5: d =3 and n =100
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Figure: F is the uniform CDF on I: F(§) = ¢ and o F(£).
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o

Figure: The same curve 8 with two different CDFs F; and F». The difference in
locations is ||S o Fy — 8o R #0.
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@ |ssues:
@ F is a group of diffeomorphisms without any geometric structure.

@ Minimizing a cost function on F € F is complicated and intractable.

@ Solutions:
@ F is isometrically mapped to the Hilbert upper-hemisphere

H= {1/1 =VF | ¥ is nonnegative, and ||¢||L: = (/w(t)th)l/2 = 1}
/

@ (H,<.,.>12) is a complete Riemannian manifold.

© Given ¢ € H and g € Ty (#H) the geodesic path with an initial
position v and a direction g at any time instant t satisfies

Wb(t) = cos (]|g||z) e + sin (tugup)ﬁ
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CDF expansion

® If Y ~GP(0,c) = lIts Karhunen-Loéve expansion is

o0

P(t) = Z a;¢(t), with a, ind N(0,)) and (¢y); is a L? basis

=1
— (A7); and (¢)), refers to eigen-values and eigen-functions of c.

@ |dentifying v and F with their truncated versions at order m

m

Unt) =D a0i(t) and Fn(e) = [ A (0ot

I=1

Proposition

Fm is a CDF if and only if A= (ay,.. .,am)T € S 1 where

m

smr={acr | A= (3 4)" =1}

=1

—~

™7 (i = = et
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Square-root velocity function (SRVF)

¢ Problems:

@ The L? metric is not a good choice to quantify the dissimilarity
between curves = The elastic metric.

@ The implementation of the elastic metric is hard in practice.

@ Solutions:
© A curve 8 can be represented by its SRVF (or g-function)
qg:1 — R
O e ey #o
& = ql&) =4 \IB©I:
0 otherwise.

@ [ o F is then represented by

9" (&) =\ F()a(F(€))
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Advantages of SRVF

@ The elastic metric defined on the shape space of curves 5 reduces to
a .2 metric on the space of SRVFs g.

@ Invariance to: translation, scaling, rotation and reparametrization
H *
since ||q7 — g5 = [la1 — q2l|.

# Given a random sample gz, ..., gy, their Fréchet mean §(¢)
minimizing the Fréchet variance

N

1
== inf_|lqg — g7|]?
V(q) N;:lﬁF"_ngq l

=L
.MZ

results to be the Euclidean mean, i.e., (&) =

q; (£)-
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Example of true and observed curves

(N=2 K=2,02=0.1)

True curve to be estimated for Observed curve: q; (¢ )]
k-th cluster: gk(¢), k=1,....K k ~ N(G%(&),0%7), i = 1,. /v
1 1
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0 0
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Bayesian clustering with GMM: K clusters

Finding the optimal truncated CDF FX depending on A for k-th cluster.
® Let 1y = P(C = k) with k=1,.
® Let gi(€)|G = k ~ N(d(8).0 I>-

Bayesian inference on coefficients A*

@ Likelihood:
P(q1,...,qn|AY, ..., AK 1y, ok, G8T(E), L, G50 (8), 0?) o
T (S meexp (= 22llai (&) — 3m(€)I13))

® Prior: B(A) o exp (= § X7, %) x davcsny

@ Log-posterior:
logP(AL, ..., AK|q1,...,qNn, 71, - - -, Tk, GR™(E), . .., GFOM(E), 0 )

Xy log (I mexp (—5kalla; (€)—3 " (£)I13) ) - s Tl T
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Spherical Hamiltonian Monte Carlo (HMC) sampling: 10*

iterations
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Figure: The Markov chain trajectory of: al (a) and (a}, a}) (b). The
nonparametric density estimation of: a} (c) and (al, a}) (d).
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Experimental results: Methods

@ Our method: spherical HMC sampling for AX with an extra MCMC
sampling for my, E]k’m(ﬁ), and o2.

@ Probability that i-th curve belongs to k-th cluster

meexp (— 52 llqf(€) — a5 (€)I13)

P(C; = klg:) =
(6= Ka) = e @ a e

¢ Comparison:
© GPA-kmeans and GPA-kmedoids, when applying the GPA to (;(&)
— vectors belonging to §"—d-1-3d(d-1),

@ TPCA-kmeans and TPCA-GMM, when applying the PCA to shape
vectors projected onto the tangent space of the sphere = vectors

belonging to R? or R3.
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Experimental results: First dataset

@ Dataset: 94 cochlea for juvenile.
@ Dimension: n x d =200 x 3.
@ Cluster 1: girls & Cluster 2: boys.

Cluster of girls (blue) and Cluster of boys (red).
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Experimental results: Clustering

Cluster of girls (blue) and Cluster of boys (red).
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Experimental results: Accuracy rates

Table: Mean clustering error (MCE), specificity (SP) and sensibility (SE) for
juvenile cochlea.

Methods MCE SP SE
TPCA-GMM | 41.75% | 58.07% | 58.5%
TPCA-kmeans | 41.54% | 58.44% | 58.5%
GPA-kmeans | 25.11% | 74.4% | 75.45%
GPA-kmedoids | 10.85% | 89.8% | 88.41%
Proposed 4.26% 94% | 97.73%
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Experimental results: Second dataset

@ Dataset: 80 cochlea for hominin.
@ Dimension: nx d =200 x 3.

@ Cluster 1: Modern humans (HSS) & Cluster 2: Paranthropus (PAR)
& Cluster 3: Gorillas (GOR) & Cluster 4: Chimpanzees (PAN) &
Cluster 5: Australopithecus (AUS).

MOLAICIO)

Figure: The Fréchet mean of each cluster.
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Experimental results: Accuracy rates

The probability: F(C; = k|q;). Table: Mean clustering error

(MCE) for hominin cochlea

p(PAN) 09 |

o8 Methods MCE
P(PAR) 07

06 TPCA-GMM 15%
p(AUS) s | TPCA-kmeans | 20%

o4 GPA-kmeans | 12.5%
P(GOR) 03

2 | GPA-kmedoids | 10%
p(HSS) 01 Proposed 0%

PAR AUS GOR
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Experimental results: lllustration

TPCA with PCl= 82.5% and PC2= 10.2% of variance.

1 ‘ |
. J o PAN
05 | % § 6 . 0 PAR |
.3.0' AUS
I 0 ¢ GOR|
0 P 0 o HSS
A/
0’
05 ...q (o]
1 oy

UCA-LIMOS MLOMA-23




Thank you for your attention !!!

CNRS PRIME research project.
More details about cochlear data collection and analysis:

jose.braga®@univ-tlse3.fr

chafik.samir@uca.fr
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